
Neural Networks as Add-on Modules for Improved
Performance of Robot Control Systems

by

Siqi Zhou

A thesis submitted in conformity with the requirements
for the degree of Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering
University of Toronto

c© Copyright 2022 by Siqi Zhou

Neural Networks as Add-on Modules for Improved Performance of Robot Control
Systems

Siqi Zhou
Doctor of Philosophy

Graduate Department of Aerospace Science and Engineering
University of Toronto

2022

Abstract

Robots are envisioned to become reliable companions in domains ranging from ad-

vanced industrial applications to our daily lives. In the literature, well-established

control techniques provide the foundation for designing high-performance robot sys-

tems with desired theoretical guarantees. However, these control techniques often

rely on a dynamics model of the robot, and any inaccuracies in the model can result

in suboptimal performance or even unsafe actions. These limitations motivate the

incorporation of machine learning into the traditional robot decision-making stack

to identify and thereby compensate for model uncertainties. In this dissertation,

learning-based control approaches are developed to enhance the performance of black-

box robot systems. While different machine learning models may be similarly applied

to enhance the performance of a robot control system, in this thesis, we focus on

neural-network-based approaches and analyze the properties that the neural network

modules must satisfy for safe and data-efficient deployment.

This dissertation contains five contributions. In the first contribution, we intro-

duce a neural network inverse dynamics learning approach for improving the perfor-

mance of black-box robot control systems in arbitrary trajectory tracking tasks (i.e.,

impromptu trajectory tracking). In the second contribution, we extend the inverse

dynamics approach to non-minimum phase robot systems (i.e., robot systems with

unstable inverse dynamics). In the third contribution, we propose an active training

trajectory generation framework for systematically training a neural network inverse

ii

dynamics model. In the fourth contribution, we outline a data-efficient online learn-

ing scheme that allows us to transfer the inverse dynamics model trained on one robot

to enhance the tracking performance of another robot. In the last contribution, we

propose a learning-based model reference adaptive controller where a Lipschitz net-

work is updated online to bridge the model-reality gap in uncertain robot systems

and the system’s stability is guaranteed by exploiting the architectural design of the

network. Through theoretical analysis and physical experiments using quadrotors,

we demonstrate that, by combining control theory and the expressiveness of neural

networks, we can design safe and efficient robot learning algorithms to achieve high

performance despite the uncertainties present in the environment.

iii

Acknowledgments

I would like to thank my supervisor, Prof. Angela Schoellig, for taking me onto

and guiding me through this exciting and memorable journey. She has always been

inspirational, encouraging, and supportive. It was a tremendous honour and pleasure

to have the opportunity to work with her.

I also wish to thank my Doctoral Examination Committee, Prof. Tim Barfoot

and Prof. Jonathan Kelly, for providing me with invaluable feedback throughout my

doctoral research and Prof. Aude Billard and Prof. Florian Shkurti for being external

examiners in my Final Oral Examination.

During my PhD, I was grateful for having the opportunities to collaborate with

amazing researchers at the Dynamic Systems Lab of the University of Toronto

Institute for Aerospace Studies (UTIAS). I wish to thank my close collaborators

and co-authors, Lukas Brunke, Xuchan Bao, Xintong Du, Melissa Greeff, Adam

Hall, Mohamed Helwa, Karime Pereida, Jacopo Panerati, Michael Sorocky, Andriey

Sarabakha, Jingxing Qian, Justin Yuan, Zining Zhu, and Wenda Zhao. I learned a

lot from them through the collaborative projects, and the experiences were enjoyable

and rewarding.

I would also like to thank Chris McKinnon, Mario Vukosavljev, and Thomas Bam-

ford, who shared their wisdom as senior students and Adam Heins, Julian Foerster,

Dave Kooijman, Carlos Luis, Sepehr Samavi, Ke Dong, Kennan Burnett, and Bhavit

Patel, who have been great colleagues during my PhD. I would also like to express

my gratitude for the support from the Vector Institute and the University of Toronto

Robotics Institute communities.

I would like to thank my parents and family, who have always been the backbone

and backed up my decisions in every adventure I took. I would not have gone this far

without their continuous encouragement and endless support. Moreover, I would like

to thank my friends, especially Olive Sun, Joanna Yu, Lian Liu, Yinan Xu, Ashley

Ding, Rui Cai, and Linghong Li, for always being there whenever I needed them.

iv

Contents

1 Introduction 1

2 Add-on Inverse Learning 8

2.1 Introduction . 8

2.2 Related Work . 12

2.3 Problem Formulation . 13

2.4 Derivation and Theoretical Analysis 15

2.4.1 Background on System Inversion 16

2.4.2 Underlying Function Modeled by the DNN Module 18

2.4.3 DNN Input Selection . 22

2.4.4 Stability . 24

2.4.5 Difference Learning Scheme for Improving the Training Efficiency 26

2.5 Simulation Results . 30

2.5.1 Simulation Setup . 32

2.5.2 Simulation 1: Illustrations of Underlying Function and Neces-

sary Condition . 33

2.5.3 Simulation 2: Illustrations of the Transfer Function Approach 35

2.6 Quadrotor Experiments . 35

2.6.1 Experiment Setup . 36

2.6.2 Experiment 1: DNN Input-Output Design 39

2.6.3 Experiment 2: Generalization to Different Trajectory Speeds . 44

2.6.4 Experiment 3: DNN Training Dataset 45

2.6.5 Experiment 4: Difference Learning 47

2.7 Conclusions . 49

3 Inverse Learning for Non-minimum Phase Systems 50

3.1 Introduction . 50

3.2 Related Work . 51

v

3.3 Problem Formulation . 52

3.4 Non-minimum Phase System Inverse Learning 54

3.4.1 The Proposed Approach: DNN Input Modification 55

3.4.2 Stability of the Proposed Approach 56

3.4.3 Insights on Performance Enhancement 57

3.4.4 Connection to the ZOS Approach 59

3.5 Simulation Results . 60

3.5.1 Simulation Setup . 60

3.5.2 Results . 61

3.6 Experimental Results . 62

3.6.1 Pendulum-Cart Experiments 63

3.6.2 Quadrotor Experiments . 64

3.7 Conclusions . 68

4 Active Training Trajectory Generation 69

4.1 Introduction . 69

4.2 Related Work . 70

4.3 Problem Statement . 71

4.4 Background on Active Learning for DNNs 73

4.4.1 DNN Model Preliminaries . 73

4.4.2 Predictive Uncertainty Estimation for DNNs 74

4.4.3 Measures of Informativeness 75

4.5 Active Training Trajectory Generation 75

4.5.1 Spline Trajectory Generation 75

4.5.2 Integrating Active Learning and Trajectory Optimization . . . 77

4.6 Simulation Results . 78

4.6.1 DNN Predictive Uncertainty Estimation 79

4.6.2 Active Training Trajectory Generation 81

4.7 Conclusions . 83

5 Cross-Robot Experience Transfer 84

5.1 Introduction . 84

5.2 Related Work . 85

5.3 Problem Formulation . 87

5.4 Theoretical Results . 88

5.4.1 Reference Adaptation for Exact Tracking 88

5.4.2 System Similarity . 90

vi

5.4.3 Stability in the Presence of Uncertainties 91

5.5 Simulation Results . 93

5.5.1 Simulation Setup . 93

5.5.2 Results . 94

5.6 Quadrotor Experiments . 95

5.6.1 Experiment Setup . 95

5.6.2 Results . 98

5.7 Conclusions . 100

6 Lipschitz Network Adaptation 101

6.1 Introduction . 101

6.2 Related Work . 103

6.3 Problem Formulation . 104

6.4 Methodology . 106

6.4.1 Background on Lipschitz Networks 106

6.4.2 Model Reference Adaptation Law 107

6.4.3 Online Learning of the Model Reference Adaptation Law . . . 108

6.4.4 Stability Analysis . 109

6.5 Simulation Results . 111

6.5.1 Simulation Setup . 111

6.5.2 Results . 112

6.6 Experimental Results . 113

6.6.1 Experimental Setup . 113

6.6.2 LipNet-MRAC for Predictable Acceleration Dynamics 116

6.6.3 Inverted Pendulum on a Quadrotor Experiments 117

6.7 Conclusions . 120

7 Summary and Future Work 122

7.1 Novel Contributions of This Thesis 122

7.2 Future Work . 124

Bibliography 125

vii

List of Figures

1.1 Recent Advances in Safe Robot Decision Making Under Uncertainties 2

1.2 An overview of the contributions included in this dissertation. 3

2.1 Block Diagram: Neural Network Inverse Dynamics Learning for En-

hancing Robot Tracking Performance 11

2.2 Simulation Results: Neural Network Inverse Dynamics Learning (Min-

imum Phase System State Space Approach) 31

2.3 Simulation Results: Neural Network Inverse Dynamics Learning (Non-

minimum Phase System State Space Approach) 32

2.4 Simulation Results: Neural Network Inverse Dynamics Learning (Min-

imum Phase System Transfer Function Approach) 34

2.5 Experimental Setup: Arbitrary Hand-drawn Trajectories for Im-

promptu Tracking Tests . 38

2.6 Experimental Results: Impromptu Tracking Performance Comparison

on a Sample Test Trajectory (Path in the xz-Plane) 41

2.7 Experimental Results: Impromptu Tracking Performance Comparison

on a Sample Test Trajectory (Position Trajectories) 41

2.8 Experimental Results: Impromptu Tracking Performance Comparison

on a Sample Test Trajectory (Position Error Trajectories) 42

2.9 Experimental Results: Impromptu Tracking Performance Comparison

on 30 Hand-drawn Trajectories . 42

2.10 Experimental Results: Generalization of the Improved Impromptu

Tracking Performance at Different Operating Speeds 43

2.11 Experimental Results: The Impact of Training Data on the Impromptu

Tracking Performance . 45

2.12 Experimental Results: An illustration of a Necessary Condition for

Applying the Difference Learning Scheme to the Neural Network Design 48

viii

2.13 Experimental Results: An illustration of the Improved Data Efficiency

from Applying the Difference Learning Scheme 48

3.1 Block Diagram: Neural Network Approximate Inverse Dynamics

Learning for Non-minimum Phase Systems 51

3.2 Illustration: Inverse Learning Approximation 58

3.3 Simulation Results: RMS Tracking Errors of the Baseline Approach

and the Approximate Inverse Learning Approach for Input Trajectories

with Different Frequencies . 62

3.4 Simulation Results: Illustration of the Adverse Effect Caused By In-

cluding Unnecessary Inputs . 62

3.5 Experimental Results: Demonstration of the Approximate Inverse

Learning Approach on an Inverted Pendulum on a Cart (Pendulum-

Cart) System . 64

3.6 Experimental Setup: Arbitrary Hand-drawn Trajectories for Evaluat-

ing the Tracking Performance of the Approximate Inverse Learning

Approach . 64

3.7 Experimental Results: Comparison of the Effectiveness of the Pro-

posed Approximate Inverse Learning Approach for a Non-minimum

Phase System Against an Analytical Approach (ZOS) and the Exact

Inverse Learning Approach for a Minimum Phase System on a Sample

Trajectory (Position Trajectories) . 65

3.8 Experimental Results: Demonstration of the Proposed Approximate

Inverse Learning Approach for a Non-minimum Phase System on a

Sample Trajectory (Path in the xz-Plane) 67

3.9 Experimental Results: Comparison of the Effectiveness of the Proposed

Approximate Inverse Learning Approach for a Non-minimum Phase

System Against the Exact Inverse Learning Approach for a Minimum

Phase System on 10 Arbitrary Hand-drawn Test Trajectories (Sum-

mary of the RMS Tracking Errors) 68

4.1 Block Diagram: Episodic Active Training Trajectory Generation

Framework for Learning a Neural Network Inverse Dynamics Module 70

4.2 Simulation Results: Comparison of Different Neural Network Uncer-

tainty Estimation Techniques . 79

4.3 Simulation Results: Summary of Tracking Performance Over 10 Train-

ing Episodes . 82

ix

5.1 Block Diagram: Transferring Neural Network Inverse Dynamics Mod-

ule Experience Across Similar Robots 85

5.2 Simulation Results: Error Prediction from an Online Learning Module 96

5.3 Simulation Results: Demonstration of the Proposed Neural Network

Inverse Transfer Approach . 97

5.4 Experimental Results: Comparison of the Proposed Neural Network

Inverse Transfer Approach Against the Baseline Approach and the Ap-

proach Using the Source Experience Alone on a Sample Test Trajectory 98

5.5 Experimental Results: Comparison of the Proposed Neural Network

Inverse Transfer Approach Against the Baseline Approach and the Ap-

proach Using the Source Experience Alone on 10 Test Trajectories . . 99

6.1 Block Diagram: Lipschitz Network Adaptation for Bridging the Model-

Reality Gap . 102

6.2 Simulation Results: Comparison of Model Reference Adaptation Us-

ing a Lipschitz Network Versus Using a Conventional Neural Network

Architecture (Output Trajectories) 112

6.3 Simulation Results: Comparison of Model Reference Adaptation Us-

ing a Lipschitz Network Versus Using a Conventional Neural Network

Architecture (Summary of Performance for Different Learning Rates) 113

6.4 Experimental Setup: Flying Inverted Pendulum Experiments 114

6.5 Experimental Results: Demonstration of the Proposed Lipschitz Net-

work Adaptation Approach . 116

6.6 Experimental Results: Evaluation of Model Reference Adaptation Ef-

fectiveness Using the Similarity Metric 117

6.7 Experimental Results: Flying Inverted Pendulum with Lipschitz Net-

work Model Reference Adaptation (Hovering) 118

6.8 Experimental Results: Flying Inverted Pendulum with Lipschitz Net-

work Model Reference Adaptation (Tracking Circular a Trajectory) . 119

x

Notation

General Notation

R the set of real numbers

Z the set of integers

∈ an element of

| · | absolute value of a scalar

|| · || norm of a vector

(·)T transpose of a vector or a matrix
∂
∂ (·) partial derivative

˙(·), (̈·) the first and the second derivative with respect to time

∇ gradient operator

E expectation of a random variable

V variance of a random variable

H entropy of a random variable

min minimization of a function

arg min a value that minimizes a function

(·)∗ an optimal value

Robot Control System

k discrete-time index

x system state

u system input

y system output

r system (vector) relative degree

n system order

(A,B,C) linear system matrices

(f, g, h) functions defining a control-affine nonlinear system

(A,B) matrices defining the input-output map of a linear system

(F ,G) functions defining the input-output map of a nonlinear system

xi

Neural Network

F nonlinear map represented by a neural network

ξ network input vector

ζ hidden layer output vector

γ network output vector

(W, b) network weight matrices and bias vectors

θ augmented vector of network parameters

D dataset

Subscripts

d desired signal

a variables associated with an actual robot control system

t variables associated with a target robot control system

s variables associated with a source robot control system

m variables associated with a reference model

xii

xiii

Chapter 1

Introduction

Robots are envisioned to become reliable companions in domains ranging from ad-

vanced industrial applications to our daily lives. Well-established control techniques

such as optimal control [1] and model predictive control (MPC) [2] provide the foun-

dation for designing high-performance robot control systems. However, these control

techniques often rely on a dynamics model of the robot, and modeling accuracy is con-

sequently a limiting factor affecting the robot’s performance in experiments. While

traditional control techniques have successfully been applied to robots in known and

static environments, robots are expected to perform increasingly complex tasks in

unstructured and dynamic environments (e.g., autonomous driving and warehouse

management). These challenges motivate advanced decision-making approaches that

allow robots to continuously learn and adapt after deployment to maintain safety and

high performance over their lifespan [3].

In parallel with the advances in control theory, machine learning has had several

recent breakthroughs in constructing complex models from data (e.g., in speech recog-

nition [4], image classification [5], and object detection [6]). There are also numerous

empirical successes of leveraging data-driven approaches for robot decision-making

problems. Some examples include end-to-end visuomotor policy learning for acquir-

ing manipulation skills based on raw image inputs [7], imitation learning for realizing

autonomous helicopter acrobatic maneuvers [8] or quadruped locomotion in tough

terrain [9], and simulation-to-reality (sim2real) transfer learning for dexterous ma-

nipulations [10]. Data-driven approaches typically utilize expressive learning models

to allow robots to acquire complex skills with minimal human input. While being

flexible, several open challenges hinder practical deployment of these algorithms in

real-world applications. Commonly mentioned challenges include the interpretabil-

ity of the learned components (e.g., policy, dynamics model, or reward function),

1

2 CHAPTER 1. INTRODUCTION

�������������

����������������
������������

��������
�����
	

�������������������������
������������

��������
�����

	

����������������
������������

��������
�����

	

������������������
����������

�����������
���������
��
����������
�����

��������
��������������
��������������

����������������
������������������

�������
��������

�����
��������

��������
��������

����������

�������������
����������������

����
����������������
�	������
��
���
������������������
������
	�
����
�������	��������
�

������������������������������������
�
���������������������
�
 ���������������

��
���
�����
�������
��� �����������������
�

�
������������������������
�
��
���������
��
�������������

������������	������
���
�
����������
 �����
���
��
����������
 �������

���������������������
�����
������
�	���������

����

�������������
������������������

�����������������������
�������
��������
�����������������
�

Figure 1.1: An overview of recent advances in safe decision making for robotics
(from [3]). Both classical and recent approaches are plotted based on two features.
The horizontal axis shows the extent of the reliance on data of the approach, and
the vertical axis reflects the level of safety guarantees provided by the approach.
Traditional control techniques typically exploit well-characterized system dynamics
or structures to provide safety guarantees. In comparison, standard reinforcement
learning approaches are applicable to a broader class of uncertain systems; however,
it is often challenging to provide safety guarantees. Recently, we have observed an
increasing number of works, including safe learning-based control, safe reinforcement
learning and safety certification approaches, that combine the advantage of control
and learning to address the problem of safe robot decision-making under uncertain-
ties. The ultimate goal is to incorporate expressive models for closed-loop control
such that the robot performance is improved without jeopardizing safety.

efficiently learning from limited samples, generalization to continuous and possibly

high-dimensional state and action spaces, and most importantly, providing provable

safety guarantees [3, 11].

Over the past five years, we have observed an increasing number of works combin-

ing the flexibility of machine learning and the domain knowledge from control theory

to design autonomous systems with improved performance while providing desired

theoretical guarantees [3] (Fig. 1.1). For instance, learning-based MPC leverages

statistical learning for inferring unknown dynamics and the MPC framework for con-

3

����������������������������
��������
	���
����������������������������

����
�����	�������������������
�����	�����������

��	���

�������� �������������
�����­��������
������������
�����������
����������

���
��	�
���

����
�����	�����������

��������������
�����������
�����������������������������
�����������	��������

��������
����
�����	����������

����������������������
�­����������������������������

���������������������������
���	������������

����
�����	����������

�������������������������
���������������������������������

��������������������������������
�����������������
����
�����	�����������

Figure 1.2: An overview of the contributions included in this dissertation.

straint satisfaction [12, 13], certified reinforcement learning integrates control theory

(e.g., Hamilton-Jacobi reachability analysis [14] and robust control theory [15]) with

reinforcement learning algorithms for learning complex policies with safety guaran-

tees, and our work [16] exploits the expressiveness of neural networks to approximate

the inverse dynamics of a closed-loop system to reliably enhance the performance of

robots in arbitrary trajectory tracking tasks.

The successful examples in the literature show a great promise of integrating ma-

chine learning techniques and control theory for real-world robot autonomy [3]. This

thesis investigates the incorporation of machine learning techniques, especially neural

networks, to improve the performance of black-box robot control systems (i.e., robot

control systems whose exact dynamics are not known). As compared to techniques

such as Gaussian processes (GPs), neural networks have the advantage of having

fixed computation cost and memory for test-time inference, making them desirable

for robotic applications where computing resources are limited. Numerous works

exploit this advantage of neural networks for real-time robot control (e.g., [17] and

[18]). While these approaches have been successfully tested in experiments, it remains

challenging to provide theoretical guarantees for neural controllers applied to robot

systems subject to unknown and possibly time-varying disturbances.

This thesis presents approaches that safely and efficiently exploit the modeling

capability of neural networks to improve the performance of uncertain robot systems.

While other learning models such as GPs may be similarly applied to improve the

performance of robot control systems, we focus on neural-network-based approaches

and derive guidelines that allow neural networks to be safely and efficiently deployed

4 CHAPTER 1. INTRODUCTION

in closed-loop control applications. The work presented in this dissertation falls un-

der the safe learning-based control category (blue region) in Fig. 1.1. The novel

contributions presented in this thesis are as follows (see also Fig. 1.2):

1. Learning Add-on Inverse Modules to Improve Robot Performance (Chapter 2):

We propose a novel neural network add-on inverse dynamics learning framework.

This approach can be applied to efficiently enhance the performance of uncertain

robot systems in tracking arbitrary feasible trajectories. We demonstrate our

approach in quadrotor impromptu tracking experiments, where a quadrotor is

tasked to track arbitrary hand-drawn trajectories accurately in single attempts.

2. Learning an Approximate Inverse to Enhance Non-minimum Phase Systems

(Chapter 3): The neural network inverse dynamics learning approach presented

in Chapter 2 requires the uncertain robot system to be minimum phase (i.e., has

stable forward and inverse dynamics). This chapter introduces a stable, approx-

imate inverse dynamics learning approach that extends to non-minimum phase

robot systems (i.e., robot systems with unstable inverse dynamics). Through

theoretical discussions, simulations, and experiments on two different platforms,

we show the stability of the proposed approximate inverse dynamics learning

approach and its effectiveness for high-accuracy, impromptu tracking. To the

best of our knowledge, this work is the first work that learns stable approximate

inverse dynamics models for non-minimum phase systems.

3. Active Training Trajectory Generation to Improve Sampling Efficiency (Chap-

ter 4): The quality of training data directly determines the performance of

a learning-based control system. In this chapter, we introduce an episode al-

gorithm that integrates a spline trajectory optimization approach with active

learning for efficiently training a neural network inverse dynamics module. We

show that, as compared to ad hoc, intuitive training approaches, the proposed

active training trajectory generation approach leads to improved data efficiency

and performance.

4. Cross-Robot Experience Transfer to Improve the Performance of Similar Robots

(Chapter 5): Inspired by the transfer learning literature, in this chapter, we

present a novel online learning framework that enables the inverse dynamics

model learned for a source robot to be transferred to a target robot and show

a preliminary study on the role of system similarity in the cross-robot trans-

fer problem. In quadrotor experiments, we illustrate that, by leveraging the

5

experience from the source robot, the proposed transfer learning approach al-

lows the target robot to achieve high-accuracy trajectory tracking on arbitrary

trajectories with minimal data recollection and retraining.

5. Lipschitz Network Adaptation to Bridge the Model-Reality Gap (Chapter 6):

In the last part of this dissertation, we derive a neural network adaptation tech-

nique that allows an uncertain robot system to behave like a predefined model

and thereby bridge the model-reality gap. The stability of the adapted system

is guaranteed by exploiting the Lipschitz property of a special type of neural

network, the Lipschitz network [19]. We demonstrate the approach in flying

inverted pendulum experiments, where an uncertain, off-the-shelf quadrotor is

challenged to balance an inverted pendulum while hovering at fixed points or

tracking circular trajectories. Our work is the first that demonstrates the ca-

pability of Lipschitz networks, both theoretically and experimentally, for the

closed-loop control of uncertain systems.

The publications pertinent to this dissertation are listed below in chronological

order. Chapter 2 corresponds to [1] and [5], Chapter 3 through Chapter 5 correspond

to [2] to [5], respectively, and Chapter 6 corresponds to [6].

[1] Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig, “Design of deep neural

networks as add-on blocks for improving impromptu trajectory tracking,” in

Proceedings of the IEEE Conference on Decision and Control (CDC), 2017,

pp. 5201-5207.

[2] Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig, “An inversion-based

learning approach for improving impromptu trajectory tracking of robots with

non-minimum phase dynamics,” IEEE Robotics and Automation Letters (RA-

L), vol. 3, no. 3, pp. 1663-1670, 2018.

[3] Siqi Zhou and Angela P. Schoellig, “Active training trajectory generation for

inverse dynamics model learning with deep neural networks,” in Proceedings of

the IEEE Conference on Decision and Control (CDC), 2019, pp. 1784-1790.

[4] Siqi Zhou, Andriy Sarabakha, Erdal Kayacan, Mohamed K. Helwa, and Angela

P. Schoellig, “Knowledge transfer between robots with similar dynamics for

high-accuracy impromptu trajectory tracking,” in Proceedings of the European

Control Conference (ECC), 2019, pp. 1-8.

6 CHAPTER 1. INTRODUCTION

[5] Siqi Zhou, Mohamed K. Helwa, and Angela P. Schoellig, “Deep neural networks

as add-on modules for enhancing robot performance in impromptu trajectory

tracking,” International Journal of Robotics Research (IJRR), vol. 39, no. 12,

pp. 1397-1418, 2020.

[6] Siqi Zhou, Karime Pereida, Wenda Zhao, and Angela P. Schoellig, “Bridging

the model-reality gap with Lipschitz network adaptation,” IEEE Robotics and

Automation Letters (RA-L), vol. 7, no. 1, pp. 642-649, 2022.

In addition to the publications above, there are ten contributions I have worked on

that are related to the discussions of this dissertation (* denotes equal contribution);

I am a main contributor in [7]-[9], [12], [14], and [15]:

[7] Siqi Zhou and Angela P. Schoellig, “An analysis of the expressiveness of deep

neural network architectures based on their Lipschitz constant”, arXiv preprint

arXiv:1912.11511, 2019.

[8] Michael J. Sorocky*, Siqi Zhou* and Angela P. Schoellig, “Experience selection

using dynamics similarity for efficient multi-source transfer learning between

robots,” in Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA), 2020, pp. 2739-2745.

[9] Michael J. Sorocky, Siqi Zhou, and Angela P. Schoellig, “To share or not to

share? performance guarantees and the asymmetric nature of cross-robot expe-

rience transfer,” IEEE Control Systems Letters (L-CSS), vol. 5, no. 3, pp. 923-

928, 2021.

[10] Lukas Brunke, Siqi Zhou, and Angela P. Schoellig, “RLO-MPC: Robust

learning-based output feedback MPC for improving the performance of un-

certain systems in iterative tasks,” in Proceedings of the IEEE Conference on

Decision and Control (CDC), 2021, pp. 2183-2190.

[11] Jacopo Panerati, Hehui Zheng, Siqi Zhou, James Xu, Amanda Prorok, and

Angela P. Schoellig, “Learning to fly—a gym environment with PyBullet physics

for reinforcement learning of multi-agent quadcopter control,” in Proceedings

of the IEEE/RSJ International Conference on Intelligent Robots and Systems

(IROS), 2021, pp. 7512-7519.

[12] Lukas Brunke*, Melissa Greeff*, Adam W. Hall*, Zhaocong Yuan*, Siqi Zhou*,

Jacopo Panerati, and Angela P. Schoellig, “Safe learning in robotics: From

7

learning-based control to safe reinforcement learning,” Annual Review of Con-

trol, Robotics, and Autonomous Systems, vol. 5, no. 1, pp. 411-444, 2022.

[13] Melissa Greeff, Siqi Zhou, and Angela P. Schoellig, “Fly out the window: Ex-

ploiting discrete-time flatness for fast vision-based multirotor flight,” IEEE

Robotics and Automation Letters (RA-L), vol. 7, no. 2, pp. 5023-5030, 2022.

[14] Lukas Brunke*, Siqi Zhou*, and Angela P. Schoellig, “Barrier Bayesian linear

regression: Online learning control barrier conditions for safety-critical control

under model uncertainty,” in Proceedings of the Annual Learning for Dynamics

and Control Conference (L4DC), 2022, accepted.

[15] Zhaocong Yuan, Adam W. Hall, Siqi Zhou, Lukas Brunke, Melissa Greeff, Ja-

copo Panerati, and Angela P. Schoellig, “safe-control-gym: A unified benchmark

suite for safe learning-based control and reinforcement learning,” IEEE Robotics

and Automation Letters (RA-L), 2022, accepted.

[16] Lukas Brunke, Siqi Zhou, and Angela P. Schoellig, “Robust predictive output-

feedback safety filter for uncertain nonlinear control systems,” in Proceedings of

the IEEE Conference on Decision and Control (CDC), 2022, accepted.

Chapter 2

Learning Add-on Inverse Modules

to Improve Robot Performance

2.1 Introduction

As continued advancements in algorithms, actuation, and sensor technology push

robots into more complex environments, increasingly sophisticated methods for con-

trolling robot motion are needed. In particular, controllers that are capable of high-

accuracy trajectory tracking are becoming increasingly important in robot applica-

tions where safety and/or efficiency are essential. For example: in search and rescue,

where robots must operate in close proximity to people [20]; in advanced manufac-

turing, where robot arms must efficiently follow pre-designed trajectories to perform

complex manipulation tasks [21]; or in industrial inspection, where unmanned aerial

vehicles fly in close proximity to facilities to enable visual inspection [22].

The trajectory tracking problem has been extensively studied in the control litera-

ture. Among various techniques, the proportional-integral-derivative (PID) controller

is often used in trajectory tracking applications. However, tuning PID parameters is

typically time-consuming, and the performance of a PID controller can be conserva-

tive [23]. Moreover, control theory shows that a standard PID control architecture

cannot achieve exact tracking for arbitrary trajectories [24].

In addition to the PID controller, model-based techniques such as Model Predic-

tive Control (MPC) have been studied for finding optimal control commands that

lead to accurate and agile robot motions [25]. Moreover, inversion-based feedfor-

ward approaches have been widely applied to achieve high-accuracy tracking [26, 27].

However, one general limitation of model-based approaches is the reliance on a suffi-

8

2.1. INTRODUCTION 9

ciently accurate dynamic model of the system, which is difficult to obtain in practice.

Adaptive control [28] and robust control [29] strategies have been used to address

uncertainties in system parameters. Yet while these approaches typically guarantee

stability, they do not take past experience into account, and the same errors are

repeated from trial to trial if the same reference is given.

As robot dynamics and operating environments become ever more complex, re-

searchers are increasingly turning to learning-based approaches to address the result-

ing model uncertainties. These learning-based approaches have been successfully ap-

plied to manipulators [30], bipedal robots [31], autonomous cars [32], and unmanned

aerial vehicles [33, 34], to name a few. A common learning-based approach that

yields high-accuracy tracking is iterative learning control (ILC). In ILC, the tracking

performance is improved by adjusting control inputs or reference signals in repeated

trials [35, 36, 37]. In addition to ILC, reinforcement learning (RL)-based approaches

have also been proposed to iteratively optimize the tracking performance [38, 39, 40].

Apart from iterative approaches, there are various works on improving the tracking

performance of classical model-based controllers by learning the uncertain or unknown

system dynamics using techniques such as Gaussian processes (GPs) [41, 42], neu-

ral networks (NNs) [43, 44], and locally weighted projection regression (LWPR) [47].

These learning techniques have also been applied to improve the tracking perfor-

mance by approximating inverse dynamic models in inversion-based feedforward ap-

proaches [46, 47]. The survey paper [111] provides a more detailed review of machine

learning techniques and their applications in robot control. We note that various non-

linear function approximation techniques could be potentially applied in our frame-

work. We focus on DNNs due to their capability to model complex nonlinear functions

while having relatively fast real-time inference. Probabilistic learning approaches such

as GPs have the advantage of providing uncertainty bounds that can be leveraged for

guaranteeing closed-loop stability (e.g., [42]); however, their computation time typi-

cally scales quadratically or cubically with the number of data points [111]. LWPRs

can also be used for nonlinear model learning. Their computational complexity scales

linearly with the number of data points, but they are local function approximators

that do not generalize to the entire state space of a robot system [111]. DNNs, on

the other hand, are universal function approximators [73]; but, due to their black-box

nature, they usually require more training data to achieve a good performance. In

this work, we focus on an offline learning setting and assume that a sufficient amount

of data is available for training. We further explore efficient training data collection

approaches in Chapter 4.

10 CHAPTER 2. ADD-ON INVERSE LEARNING

In this chapter, we consider the impromptu tracking problem. That is, we aim

to achieve high-accuracy tracking of arbitrary, feasible trajectories from the first at-

tempt. Motivated by the success of the learning-based control approaches for robot

control, we present a deep neural network (DNN)-based approach for enhancing the

impromptu tracking control performance of black-box systems. This work is moti-

vated by our previous work [48], in which a DNN add-on module was used to improve

the performance of quadrotors in tracking arbitrary, hand-drawn trajectories. The

proposed DNN-enhancement architecture is illustrated in Fig. 2.1. During the train-

ing phase, the input, output, and state of the baseline system are recorded for training

a DNN module. Then, during the testing phase, the DNN module is pre-cascaded to

the baseline system to adapt the reference signals to establish an identity map from

the desired output to the actual output. In [48], experiments on 30 arbitrary, hand-

drawn trajectories show that the DNN-enhancement control architecture effectively

reduces the tracking error of the quadrotor vehicle by 43% on average as compared to

the baseline controller. As compared with the other learning-based tracking control

approaches, the proposed DNN-approach has the following advantages:

• Unlike the iterative learning methods (ILC approaches and some RL-based ap-

proaches such as [40]), the proposed DNN approach can be directly used for

tracking arbitrary, feasible trajectories without further adaptations during the

testing phase, and consequently, it satisfies the impromptu tracking require-

ment.

• Compared to more common approaches (such as forward or inverse dynamic

learning) where the learning component typically resides in the main control

loop, we use the DNN module as an add-on block that is placed outside of the

closed-loop system to improve the tracking performance. This add-on approach

enables black-box control systems to be improved retrospectively.

• As will be discussed in the following section, the proposed approach is less prone

to instability than other inverse-based approaches because the DNN loop can be

run at a lower rate than the baseline control loop [48]. Moreover, the proposed

architecture can potentially lead to better learning-enhanced performance as

the closed-loop system has a more repeatable behaviour [49].

While experiments from [48] have shown that the DNN approach shown in Fig. 2.1

is effective for quadrotors, the DNN module was designed by trial-and-error, and

guidelines for systematically applying the approach to other robotic platforms were

2.1. INTRODUCTION 11

Baseline
Controller Plant

DNN
Module

Testing Phase

Training Phase (Offline)

-

Baseline Feedback Control System

-
DNN

Module

StorageStorage

selected
desired
output

reference actual
output

state

Figure 2.1: The DNN-enhancement control architecture: During the training phase
(shaded yellow region), a baseline system is treated as a black box, and the reference
u, output y, and state x are recorded for training a DNN module. During the testing
phase (shaded green region), the DNN module is pre-cascaded to the baseline system
and adjusts the reference u(k) based on the current state x(k) and a set of selected
future desired output yd(k+ ∆i) to enhance the tracking performance of the baseline
system, where k ∈ Z≥0 is the discrete-time index and ∆i ∈ Z>0.

not given. In [50], we presented preliminary theoretical results on the DNN-based

approach based on a single-input-single-output (SISO) system formulation. In this

chapter, we provide a comprehensive theoretical study of the DNN-based approach

and support it with both simulations and extensive experimental results. In partic-

ular, based on a multi-input-multi-output (MIMO) system formulation, our study

in this chapter includes: (1) characterizing the underlying function represented by

the DNN module, (2) identifying a necessary condition for the DNN approach to be

effective, (3) deriving a condition that allows for further improving the DNN training

data efficiency, and (4) analyzing the stability of the overall DNN-enhanced system

given the presence of modeling errors in the DNN module. These theoretical insights

are illustrated in simulation and verified with extensive quadrotor experiments.

We also note that, in the first work [48], a DNN is chosen as the learning technique

to construct the add-on block. This design decision was motivated by the fact that

the amount of memory and computational cost of the forward pass of the DNN is

fixed as more data is collected. In contrast to nonlinear regression methods such

as GPs, the relatively fixed memory and computational cost allow the DNN model

to be implemented on robot platforms where onboard computational resources are

limited [48]. Following [48], we use DNNs as the learning technique in our work;

however, the presented theoretical insights can be potentially generalized to other

nonlinear regression techniques.

12 CHAPTER 2. ADD-ON INVERSE LEARNING

2.2 Related Work

The DNN module in the proposed control architecture (Fig. 2.1) aims to establish

an identity map from the desired output to the actual output [48]. In the literature

of NN-based control, common approaches that have a similar objective include direct

inverse control, feedback-error learning control, and adaptive inverse control.

In direct inverse control, an NN is trained to approximate the inverse dynamics of

the open-loop plant, and is pre-cascaded to the plant as the controller to achieve exact

tracking [51, 52]. Early literature such as [53, 54] compared different approaches for

training the NN inverse model and discussed details concerning practical implemen-

tation. For example, [53] pointed out that an NN directly trained with the reversed

input-output data from the open-loop plant is not ‘goal-directed’ — the training

objective of minimizing the regression error of the model output does not directly re-

flect the control objective of minimizing the tracking error of the system. To address

these concerns, training schemes such as the distal teacher [53] have been proposed.

However, apart from these discussions, a fundamental drawback of the direct inverse

control approach is the lack of robustness against disturbances in the system. This

drawback is attributed to the fact that the NN inverse model is often used as the only

controller of the system.

To address the issues with direct inverse control, [54] proposes a feedback-error

learning scheme. This approach employs a feedback control loop, where the input

command to the plant is the sum of the signal from the feedback controller and

feedforward signal from an NN-based inverse model. In contrast with typical direct

inverse control, the error signal for training the NN is the output of the feedback

controller instead of the typical regression errors based on the plant input-output data.

Although practical considerations such as the ‘goal-directness’ issue and robustness

issue are addressed in the feedback error learning approach, the training of the NN

requires a plant in the loop, which may not be desired in the early training phase.

Another inversion-based approach for trajectory tracking problems is adaptive

inverse control, in which the parameters of an NN controller are updated online to

realize tracking functionalities [55, 56, 57]. A limitation of the adaptive-NN approach

is that an appropriate initialization for the NN parameters are typically needed for

convergence [55].

Overall, despite the similarity in the control objective, there are fundamental dif-

ferences between the proposed DNN control architecture in Fig. 2.1 and the common

NN-based inverse control architectures. One of the differences is that the proposed

2.3. PROBLEM FORMULATION 13

DNN control architecture modifies the reference of a stabilized closed-loop system,

while the common NN-based inverse control approaches directly modify the input to

the open-loop plant. From a practical perspective, this difference has two potential

benefits: (i) By introducing the DNN as an outer loop that runs at a lower rate

as compared to the baseline system, the overall approach is less prone to stability

issues [48]. (ii) Since the closed-loop system partially compensates non-repeated dis-

turbances, the response of the closed-loop system is more repeatable than that of the

open-loop plant [49]. Thus, learning to adapt the reference of a closed-loop system

can be potentially more effective for achieving good tracking performance. In contrast

to adaptive inverse control, in which high-accuracy tracking control and stability of

the plant are simultaneously achieved by the designed NN parameter update laws,

the proposed DNN approach achieves stabilization through the design of the baseline

controller, and tracking performance is enhanced separately by the pre-cascaded DNN

module. This approach of decoupling the stabilization and tracking performance en-

hancement problems can greatly simplify the DNN design and training in practical

applications. We furthermore investigate the effectiveness of the proposed DNN ap-

proach for the problem of impromptu tracking, and verify this experimentally by

testing whether quadrotors are able to accurately fly arbitrary, hand-drawn trajecto-

ries from the first attempt. Although the NN-based inverse control approaches in the

literature provide theoretical foundations for designing high-accuracy tracking con-

trollers, their ability to track arbitrary, feasible trajectories has not been thoroughly

demonstrated in experiments.

2.3 Problem Formulation

Our objective is to enhance black-box control systems to achieve high-accuracy, im-

promptu tracking. In [48], with quadrotors as the test platform, a DNN-enhancement

control architecture (Fig. 2.1) was proposed to establish an identity map from the de-

sired output yd to the actual output y. In this chapter, we aim to provide a platform-

independent formulation of the proposed DNN-enhancement control architecture [48].

This formulation includes the following objectives:

(O1) identifying the underlying function that should be represented by the DNN

module in order to establish an identity map from yd to y;

(O2) identifying necessary conditions for the approach to be effective;

(O3) deriving guidelines for systematically selecting the inputs and outputs of the

14 CHAPTER 2. ADD-ON INVERSE LEARNING

DNN module;

(O4) analyzing the stability of the DNN-enhanced system in the presence of regression

errors; and

(O5) characterizing a condition that allows for further improving data efficiency of

the DNN training.

In the following discussion, we first consider linear time invariant (LTI) multi-

input-multi-output (MIMO) baseline systems represented by the following state space

model
x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),
(2.1)

where k ∈ Z≥0 denotes the discrete-time index, x ∈ Rn is the system state, u ∈ Rm

is the reference signal sent to the baseline system, y ∈ Rm is the system output,

and A, B, and C are constant matrices of appropriate dimensions. After presenting

the insights from the linear system formulation, we then extend the discussion to

nonlinear MIMO baseline systems represented by

x(k + 1) = f(x(k)) + g(x(k))u(k),

y(k) = h(x(k)),
(2.2)

where f(·), g(·), and h(·) are matrices of smooth functions with appropriate dimen-

sions. Note that, in the discussion of this work, we focus on square MIMO systems

having the same number of inputs and outputs. This is not a restrictive formulation

for tracking applications, since systems (2.1) and (2.2) typically represent baseline

closed-loop systems, and each output in y has a corresponding reference input in u.

Also note that we consider discrete-time closed-loop baseline systems. The sampling

time of the system is defined by the underlying controller that is assumed to be given.

In deriving the theoretical insights, we make the following assumptions:

(A1) the baseline system is input-to-state stable [58]. For the nonlinear system (2.2),

we additionally assume that the state can be bounded by

||x||∞ ≤ L1||u||∞ + L2||x0||+ L3, (2.3)

where || · ||∞ denotes the infinity norm, x0 ∈ Rn is the initial state, and L1, L2,

and L3 are constant, positive scalars;

2.4. DERIVATION AND THEORETICAL ANALYSIS 15

(A2) at any instant k, a preview of n future time steps of the desired trajectory (i.e.,

{yd(k), yd(k + 1), ..., yd(k + n)}) is available, where n is the system order;

(A3) the DNN module has a feedforward architecture and globally Lipschitz activa-

tion functions.

Note that assumptions (A1)-(A3) are not restrictive. Assumption (A1) on the sta-

bility of the baseline closed-loop system can be achieved by proper controller designs

with well-developed control techniques even in the absence of a detailed or highly-

accurate dynamic model of the system. We note that while we require the baseline

control system to be stable, it does not necessarily have a satisfactory tracking per-

formance. Our goal is to derive an add-on learning approach to enhance the tracking

performance of the baseline control system on arbitrary feasible trajectories. The

inequality (2.3) in Assumption (A1) holds for input-to-state stable linear systems; for

nonlinear systems, this is an additional assumption that we use to provide a theo-

retical guarantee on stability of the overall control system. For assumption (A2), a

preview of n steps of the desired trajectory is usually available in practice, and does

not prevent combinations with online trajectory generation algorithms. For assump-

tion (A3), although we use feedforward neural networks (FNNs) in our work, the

proposed approach can be potentially adapted for use with other nonlinear regression

techniques (e.g., GPs, recurrent neural networks). The globally Lipschitz condition

in assumption (A3) holds for the commonly used activation functions such as the

rectified linear unit (ReLU), sigmoid, and hyperbolic tangent.

2.4 Derivation and Theoretical Analysis

In this section we provide four theoretical insights to achieve the objectives (O1)-(O5)

stated in Sec. 3.3. We begin our discussion with a background on the inversion of

dynamic systems in Sec. 2.4.1. We then build on this conceptual overview in Sec. 2.4.2

to derive the underlying function to be modeled by the DNN module to establish

an identity map between the desired and actual outputs, and identify conditions

that are necessary for the proposed DNN approach to be effective. Building on the

insight regarding the underlying function modeled by the DNN module, we provide

guidelines for systematically selecting the inputs and outputs of the DNN module in

Sec. 2.4.3, provide a proof of stability of the overall control system in the presence of

DNN regression errors in Sec. 5.4.3, and derive a condition that allows us to further

improve the data-efficiency of the DNN training in Sec. 2.4.5.

16 CHAPTER 2. ADD-ON INVERSE LEARNING

2.4.1 Background on System Inversion

Starting with the DNN-enhancement control architecture in Fig. 2.1, [48] initially

designed a DNN module with yd(k) and x(k) as input and u(k) as output to enhance

the tracking performance of the quadrotor baseline control system. The experiments

of [48] show that the DNN module is able to enhance the tracking performance of the

baseline system only after yd(k) in the DNN input is replaced by certain future desired

outputs {yd(k + ∆1), yd(k + ∆2), ..., yd(k + ∆L)} with ∆1,∆2, ...,∆L ∈ Z>0 selected

based on trial-and-error. As will be shown in Sec. 2.4.2, this experimental observation

can be explained by associating the DNN module with the inverse dynamics of the

baseline system.

In order to facilitate the following discussions, in this subsection, we state the

formal definition of the vector relative degree [59], and discuss its connection to the

system inverse. In the discussions below, we use h ◦ f to denote the composition of

the functions h and f , and f i to denote the i-th composition of the function f with

f 0
(
x(k)

)
= x(k) and f i

(
x(k)

)
= f ◦ f i−1

(
x(k)

)
.

Definition 2.4.1 (Vector Relative Degree). The nonlinear MIMO system (2.2) has

a vector relative degree (r1, r2, ..., rm) at an operating point (x0, u0) if

(i) ∂
∂uj
hi ◦ fp

(
f(x) + g(x)u

)
= 0, ∀i = {1, 2, ...,m}, ∀p = {0, 2, ..., ri − 2}, ∀j =

{1, 2, ...,m} for every point (x, u) in some neighbourhood of (x0, u0), where uj is

the j-th element of the input u, and hi is the i-th element of the vector function

h; and

(ii) the decoupling matrix G(x, u) ∈ Rm×m with elements [G(x, u)]ij = ∂
∂uj
hi ◦

f ri−1
(
f(x) + g(x)u

)
has full rank at the operating point (x0, u0).

Note that, from the first condition (i) of Definition 2.4.1, if we focus on an output

dimension yi, the relative degree ri can be interpreted as the number of sample delays

between changing any of the inputs uj, j = 1, · · · ,m, and changing the output yi.

Given that both (i) and (ii) of Definition 2.4.1 are satisfied, the relative degree ri

associates the value of an output yi at time step k + ri with a non-zero input u

applied at time step k. The decoupling matrix G(x, u) in the second condition (ii)

of Definition 2.4.1 is the collection of the Jacobian of yi(k + ri) with respect to the

input u; the non-singularity condition requires that the outputs y(k + r) = [y1(k +

r1) · · · ym(k + rm)]T are influenced by the input u(k) in non-repeated (linearly

independent) ways.

2.4. DERIVATION AND THEORETICAL ANALYSIS 17

Remark 2.4.1 (Vector Relative Degree for Linear Systems). As a special case of Def-

inition 2.4.1, the linear MIMO system (2.1) has a vector relative degree (r1, r2, ..., rm)

if

(i) CiA
pBj = 0, ∀i = {1, 2, ...,m}, ∀p = {0, 2, ..., ri − 2}, ∀j = {1, 2, ...,m}, where

Ci is the i-th row of the matrix C and Bj is the j-th column of the matrix B,

and

(ii) the decoupling matrix B ∈ Rm×m with elements [B]ij = CiA
ri−1Bj has full rank.

Example 2.4.1 (Relative Degree). Consider an LTI, SISO system with the system

matrices (A,B,C) defined as follows:

A =

[
0 1

−0.15 0.8

]
, B =

[
0

1

]
, and C =

[
0.8 0

]
. (2.4)

The relative degree of the system is given by (p+ 1) with p being the smallest integer

such that CApB 6= 0. To determine the relative degree of the system, we compute the

value of CApB for p = {0, 1, ...} until the product of the matrices becomes non-zero:

p CApB

0 0.0

1 0.8

For this example, the system relative degree is two. This implies that there is an

inherent delay of two time steps between applying an input to the system and observing

a corresponding change in the system output.

Note that, from Definition 2.4.1, for MIMO systems with a well-defined vector

relative degree, one may relate the future output y(k + r) to the current state x(k)

and input u(k). Having a well-defined vector relative degree is a necessary condition

for applying the proposed DNN-based enhancement approach. Although a generic

nonlinear MIMO system may not necessarily have a full-rank decoupling matrix and

thus a well-defined vector relative degree, this property holds for practical robot

systems such as quadrotors and robot manipulators [59]. To the best of our knowledge,

we are unaware of a robot system example where this condition does not hold. In the

following subsections, based on the notion of vector relative degree, we formalize the

DNN-based approach proposed in [48], develop theoretical insights for systematically

designing the DNN module, and provide comments on its practical implementation.

18 CHAPTER 2. ADD-ON INVERSE LEARNING

2.4.2 Underlying Function Modeled by the DNN Module

In this subsection we show that, given the system representations in (2.1) and (2.2),

an identity map from the desired output yd to the actual output y is achieved if

the DNN module learns the output equation of the inverse dynamics of the baseline

system. Due to this association with inverse dynamics, a necessary condition for

the proposed approach to be effective is that the baseline system has stable inverse

dynamics. For simplicity, we will start our discussion with the linear system (2.1) and

then extend the results to the nonlinear system (2.2). Note that although we start our

discussion with known system models, we will later demonstrate that implementing

the proposed DNN-enhancement approach requires only minimal knowledge about

the baseline system (e.g., its order and relative degree). This required knowledge can

typically be determined from simple dynamic models or step response experiments.

By applying the definition of the vector relative degree in Remark 2.4.1 to the

linear system (2.1), we can relate the input u and the output y of the baseline system

by

yi(k + ri) = CiA
rix(k) + CiA

ri−1Bu(k), (2.5)

or in augmented form,

y(k + r) = Ax(k) + Bu(k), (2.6)

where y(k+ r) = [y1(k+ r1) · · · ym(k+ rm)]T , A = [(C1A
r1)T · · · (CmA

rm)T]T , and

B is the decoupling matrix of system (2.1).

Let yd(k+r) = [y1,d(k+r1) · · · ym,d(k+rm)]T be the desired output corresponding

to y(k + r). Since the decoupling matrix B has full rank by condition (ii) of the

vector relative degree definition in Remark 2.4.1, it can be shown that if we choose

the following control law

u(k) = B−1 (−Ax(k) + yd(k + r)) , (2.7)

then y(k + r) = yd(k + r), or exact tracking, is achieved. Thus, for the proposed

DNN-enhancement control architecture in Fig. 2.1 and system (2.1), the DNN module

should be trained to approximate (2.7) to establish an identity map between yd and

y. If we consider yd as the input and u as the output, (2.7) is in fact the output

equation of the inverse dynamics of system (2.1).

Note that the first condition (i) in Remark 2.4.1 implies that the relative degree ri

associated with the output dimension i is the smallest integer such that CiA
ri−1Bj 6= 0

for any input dimension j. As briefly noted in Sec. 2.4.1, the relative degree ri is the

2.4. DERIVATION AND THEORETICAL ANALYSIS 19

number of sample delays between applying an input u to the system and first seeing

its effect in the particular output yi. This inherent delay from input to output is

a well-known fact for discrete-time linear systems. By training the DNN module to

approximate (2.7), the inherent delay of the system is compensated by the preview

of the future desired output yd(k + r). In practice, at a particular time k, a preview

of r steps of the desired trajectory (where r ≤ n) is not challenging to satisfy with

online or offline trajectory generation algorithms; the non-causality in (2.7) is thus

not an issue in practical applications.

We next generalize the previous discussion to nonlinear systems. By assuming the

system (2.2) has a well-defined vector relative degree, and applying Definition 2.4.1,

we can relate the input u and output y of the nonlinear MIMO system (2.2) by

yi(k + ri) = hi ◦ f ri−1
(
f(x(k)) + g(x(k))u(k)

)
, (2.8)

or in an augmented form

y(k + r) = h ◦ f r−1
(
f(x(k)) + g(x(k))u(k)

)
, (2.9)

where h◦f r−1 is a vector of composition functions with the i-th element being hi◦f ri−1.
As discussed in [60, 59], by assuming y(k+r) is affine in the input u(k), the decoupling

matrix G(x, u) is independent of u and (2.9) becomes

y(k + r) = F
(
x(k)

)
+ G

(
x(k)

)
u(k), (2.10)

where F
(
x(k)

)
= h ◦ f r

(
x(k)

)
is a composite function with the i-th element being

hi ◦ f ri . This special case holds for nonlinear mechanical systems such as robot

manipulators [59]. Since the decoupling matrix G has full rank by the second condition

(ii) in Definition 2.4.1, exact tracking (i.e., y(k + r) = yd(k + r)) can be achieved by

choosing the control law

u(k) = G−1
(
x(k)

)(
−F

(
x(k)

)
+ yd(k + r)

)
(2.11)

for the affine case in (2.10), and it is reasonable to assume that

u(k) = F (x(k), yd(k + r)) (2.12)

for the general case in (2.9), where F : Rn × Rm 7→ Rm is a vector of nonlinear

functions.

20 CHAPTER 2. ADD-ON INVERSE LEARNING

Based on the above results, we now present our insight on the underlying function

modeled by the DNN module, and describe the conditions that are necessary for the

learning-based approach to be effective:

Remark 2.4.2 (Underlying Function and Necessary Conditions). Consider the DNN-

enhancement control architecture in Fig. 2.1. In order to establish an identity map

between the desired output yd and the actual output y, the DNN module should ap-

proximate the output equation of the baseline system’s inverse dynamics. Due to the

association with inverse dynamics, two necessary conditions for the learning approach

to be effective are: (i) the baseline system has a well-defined (vector) relative degree;

and (ii) the baseline system has stable zero dynamics.

Example 2.4.2 (Ideal Control Law for Exact Tracking). Consider the SISO system

in Example 2.4.1. The system has a relative degree of two and does not have any

unstable zeros. For this example, we assume that the system matrices (A,B,C) are

known and use the ideal control law (2.7) for exact tracking. We can compute the

values of A and B in (2.7) as follows:

A = CAr = [−0.12 0.64] and B = CAr−1B = 0.8, (2.13)

where the system relative degree r is two. Given A and B, the ideal control law for

this example is

u(k) = [0.15 − 0.8] x(k) + 1.25 yd(k + 2). (2.14)

We illustrate the control law in (2.14) for exact tracking using a simple numerical

example. Suppose that the initial state of the system is x0 = [0, 0]T , and the desired

output is yd(k) = sin(k). The values of the desired output yd(k), the input u(k)

computed based on (2.14), and the system output y(k) for the first few time steps are

shown below:

k yd(k) u(k) y(k) yd(k)− y(k)

0 0.00 1.14 0.00 0.00

1 0.84 -0.73 0.00 0.84

2 0.91 -0.92 0.91 0.00

3 0.14 -0.42 0.14 0.00

4 -0.76 0.47 -0.76 0.00

5 -0.96 0.92 -0.96 0.00
...

...
...

...
...

2.4. DERIVATION AND THEORETICAL ANALYSIS 21

Note that the system output y(k) is zero for the first two time steps. This is expected

as the relative degree (or, the inherent delay) of the system is two. For k ≥ 2, we see

that the input computed based on (2.14) leads to exact tracking. As we will discuss

in Sec. 2.4.3, when the system dynamics are not known, we can train a DNN to

approximate the ideal control law.

By inspecting the control laws in (2.7) and (2.12), it can be seen that the ideal

control law that leads to exact tracking is dependent on the current x(k) and the

future desired output yd(k + r) for either the linear or nonlinear case, where r is the

vector relative degree. In practice, when training the DNN module to approximate

the control law for achieving exact tracking, we do not require a detailed dynamic

model of the system. Instead, we need only identify the vector relative degree r of

the baseline system. Experimentally, for the linear system (2.1) and the special case

of the nonlinear system (2.2) where y(k + r) is affine in u(k), one can identify the

vector relative degree of the baseline system through m step response experiments

detailed as follows. In each of the m experiments, the system is initialized at an

equilibrium point, and one element of the input, uj, is activated. Without loss of

generality, we assume the equilibrium is the origin. After the m experiments, one

may determine the minimum number of time delays between the output yi and the

inputs uj for all j; the minimum number of time delays for the output dimension yi

is the estimated relative degree ri associated with the particular output dimension.

After estimating the relative degree for each output dimension, it remains to check the

non-singularity condition (ii) in Definition 2.4.1. From the m experiments, one may

construct a matrix D̃, where the j-th column of D̃ is [y1(r1) · · · ym(rm)]T from the j-th

experiment. By inspecting (2.6) and (2.10), it can be shown that the non-singularity

condition (ii) in Definition 2.4.1 can be examined from the rank of D̃.

The stability of the zero dynamics of the linear system (2.1) is equivalent to the

stability of the system’s inverse dynamics, and is characterized by the zeros of the

system transfer function. In practice, for linear systems, we may infer the stability of

zero dynamics from characteristics of the system’s step responses such as undershoot

and zero crossings [61]. The zero dynamics of the nonlinear system (2.2) is the

system’s invariant dynamics when the input u(k) is chosen such that y(k) = 0 for all k.

For nonlinear systems, achieving stable zero dynamics is a necessary but not sufficient

condition for achieving stable inverse dynamics [62]. Hence, a necessary condition for

applying the proposed DNN-learning approach to either the linear system (2.1) or

the nonlinear system (2.2) is that the baseline system has stable zero dynamics.

22 CHAPTER 2. ADD-ON INVERSE LEARNING

2.4.3 DNN Input Selection

In this subsection, we identify the necessary and sufficient inputs of the DNN module

to compute the reference u(k) of the baseline system (2.1) and (2.2) to achieve exact

tracking. By designating the output of the DNN module as O = {u(k)}, we can

determine the appropriate DNN input I for either the linear or the nonlinear case

based on the following insight.

Remark 2.4.3 (DNN Input Selection). In order to establish an identity map from

yd to y, the necessary and sufficient input of the DNN add-on module is I =

{x(k), yd(k+r)}, where yd(k+r) = [y1,d(k+r1) · · · ym,d(k+rm)]T and r = (r1, ..., rm)

is the vector relative degree of the system.

Remark 2.4.3 directly follows from the fact that the DNN should approximate the

baseline system inverse to achieve unity mapping between yd and y and from (2.7)

and (2.12) of the system inverse.

Example 2.4.3 (DNN Input Selection). For the SISO system in Example 2.4.1, we

have r = 2, and the input selection of the DNN add-on module for establishing an

identity map from yd to y is I = {x(k), yd(k + 2)}.

The implementation of Remark 2.4.3 requires knowledge or estimation of the full

state of the system x. In many robotics applications, linearization techniques are

used for the baseline system controller designs, and this often leads to decoupled

linear dynamics. Some examples include ground vehicles in which the dynamics in

the two-dimensional position space can be converted to decoupled integrators with

the point-ahead linearization technique [63], and fully-actuated manipulators in which

the dynamics in the joint space can be turned into decoupled double integrators with

feedback linearization [64]. In cases where the full state of the system is not available,

but where the closed-loop dynamics can be approximated as a decoupled MIMO linear

system, we can derive an alternative DNN input selection.

In deriving the alternative input selection, we first equivalently represent sys-

tem (2.1) by Y (z) = H(z)U(z), where

H(z) = C(zI − A)−1B, (2.15)

and U(z) and Y (z) are the z-transform of the input and output of the baseline system,

respectively. To show the main idea, we first consider the special case of a SISO linear

system (i.e., m = 1). Without loss of generality, we assume that the SISO system is

2.4. DERIVATION AND THEORETICAL ANALYSIS 23

represented by a discrete-time transfer function of the following form:

H(z) =
Y (z)

U(z)
=
βn−rz

n−r + βn−r−1z
n−r−1 + · · ·+ β0

zn + αn−1zn−1 + · · ·+ α0

, (2.16)

where αi and βi are scalar constants, and r and n are the relative degree and degree

of the system respectively. By calculating the inverse system of (2.16) and applying

inverse z-transformation, it can be shown that the reference u(k) for achieving exact

tracking is

u(k) =
1

βn−r
yd(k + r) +

αn−1
βn−r

yd(k + r − 1) + · · ·+ α0

βn−r
yd(k − n+ r)

− βn−r−1
βn−r

u(k − 1)− βn−r−2
βn−r

u(k − 2)− · · · − β0
βn−r

u(k − n+ r).

(2.17)

Based on (2.17), we can alternatively select the DNN input for a SISO linear baseline

system to be I = {yd(k − n + r : k + r), u(k − n + r : k − 1)}, where the column ‘:’

abbreviates consecutive discrete-time indexes.

The transfer matrix H(z) of a decoupled MIMO linear system (2.1) is a diago-

nal matrix; the dynamics between each input-output pair (ui, yi) can be considered

separately, where i ∈ {1, ...,m}. As outlined in Sec. (2.4.2), one can execute m ex-

periments to identify the relative degree ri for each output yi. Similar to the SISO

scenario discussed above, in the case of the decoupled MIMO linear system, we can

consider each reference dimension separately and train m networks with the input of

each network being Ii = {yd,i(k − n + ri : k + ri), ui(k − n + ri : k − 1)} and output

being O = {ui(k)}, where ri is the relative degree corresponding to the i-th output

dimension, and yd,i denotes the i-th desired output dimension.

Remark 2.4.4 (Alternative Input Selection for Decoupled MIMO Linear Systems).

Based on the transfer function formulation, we can derive an alternative, sufficient

input selection of the DNN module for a decoupled MIMO linear system. For this

case, we propose using a DNN module with m independent networks – one for each of

the baseline system reference dimensions. The input to the i-th network in the DNN

module is Ii = {yd,i(k− n+ ri : k+ ri), ui(k− n+ ri : k− 1)}, where ri is the relative

degree corresponding to the output dimension yi. Note that, in the special case where

ri = n, the reference ui(k) for exacting tracking does not depend on past references,

and the input to the i-th network is Ii = {yd,i(k − n+ ri : k + ri)}.

Example 2.4.4 (Alternative DNN Input Selection). The order and the relative degree

of the SISO system we considered in Example 2.4.1 are n = 2 and r = 2, respectively.

24 CHAPTER 2. ADD-ON INVERSE LEARNING

An alternative input selection for the DNN add-on module for establishing an identity

map from yd to y is I = {yd(k), yd(k + 1), yd(k + 2)}.

In comparison with the input selection based on the state space representation (Re-

mark 2.4.3), the implementation of the alternative input for the linear systems does

not require the estimation of the full state x(k) of the system and instead only requires

the identification of the order of the system n, which can be determined from the laws

of physics for common robot systems such as multi-link manipulators and quadro-

tors. Note, however, that this transfer function approach is derived for decoupled

linear systems; the state space approach is applicable to more general cases. When

the state of the system is available, applying the state space approach has additional

advantages. One advantage of the state space approach is the current state feedback

to the DNN module. This additional feedback from the baseline system can help

compensate for the initial errors and disturbances along the trajectory. Moreover,

the input selection based on the state space approach typically leads to a DNN with

a lower input dimension than the transfer function approach. As an example, for a

SISO linear system, the dimension of the DNN inputs derived from the transfer func-

tion and the state space approaches are (2n− r + 1) and (n + 1), respectively. This

reduced DNN input dimension implies that the amount of data required to cover the

operational space is potentially less, and thus the DNN training can be made more

efficient by using the state space approach.

2.4.4 Stability

In this subsection, we restrict our discussion to minimum phase systems (i.e., sys-

tems with stable inverse dynamics), and prove the stability of the overall DNN-

enhancement control system in the presence of DNN modeling errors:

||u(k)− û(k)|| 6= 0, (2.18)

where u(k) corresponds to the exact inverse in (2.12) ((2.7) for the linear system case)

and û(k) corresponds to the reference outputted by the DNN module trained based on

the system input-output data. Note that, in the ideal case, where the DNN models

the inverse dynamics exactly, the response from the desired output to the actual

output is the identity map, and the overall system is input-to-state stable. However,

in the presence of modeling errors, due to the state feedback connection to the DNN

module (see Fig. 2.1), the stability of the overall system needs to be assessed. In

this subsection, we show that under Assumptions (A1) and (A3), the DNN-enhanced

2.4. DERIVATION AND THEORETICAL ANALYSIS 25

system with the proposed input selection as in Remark 2.4.3 is input-to-state stable

if the regression error of the DNN module is sufficiently small.

By assumption (A3), the DNN module has a feedforward architecture, and the

activation functions are globally Lipschitz; since the DNN is a composite of linear

combinations of Lipschitz functions, the output of the DNN module, û, is globally

Lipschitz in its inputs, x and yd. In particular, we can bound the output of the DNN

module by

||û||∞ ≤ L4||x||∞ + L5||yd||∞, (2.19)

where L4 and L5 are positive, constant scalars associated with a Lipschitz constant

of the network, which can be either estimated [65] or prescribed [19]. Moreover,

since we consider a baseline system that is minimum phase (i.e., has a stable inverse

dynamics), the reference u(k) corresponding to the exact inverse in (2.12) is bounded

(i.e., ||u||∞ < ∞). As a result of the global Lipschitz condition of the DNN module

in (2.19) and the boundedness of u, an upper bound on the modeling error of the

DNN module can be derived as follows:

||u− û||∞ ≤ ||û||∞ + ||u||∞ ≤ L4||x||∞ + L5||yd||∞ + L6, (2.20)

where L6 = ||u||∞ is the bound on the exact inverse reference u of the minimum phase

baseline system.

Theorem 2.4.1 (Stability of the DNN-Enhancement Approach). Consider the DNN-

enhancement control architecture (Fig. 2.1) and the case where the baseline system

is minimum phase. Under assumptions (A1) and (A3) , the overall DNN-enhanced

system is input-to-state stable if L1L4 < 1, where L1 and L4 are constant scalars

defined in (2.3) and (2.20), respectively.

Proof. By assumption (A1) , the baseline system is input-to-state stable, and with û

as the system input, the state of the system is bounded by

||x||∞ ≤ L1||û||∞ + L2||x0||+ L3. (2.21)

By combining the bound on the regression error in (2.20) and the bound on state

in (2.21), the following is obtained:

||x||∞ ≤ L1||u− û||∞ + L1||u||∞ + L2||x0||+ L3 (2.22)

≤ L1L4||x||∞ + L1L5||yd||∞ + L7, (2.23)

26 CHAPTER 2. ADD-ON INVERSE LEARNING

where L7 = L1L6 + L1||u||∞ + L2||x0||+ L3. Based on (2.23), if

L4 <
1

L1

, (2.24)

is satisfied, then the state of the system is bounded by

||x||∞ ≤
L1L5||yd||∞ + L7

1− L1L4

, (2.25)

which is bounded by a constant for bounded input yd. Thus, if L4 <
1
L1

, then the

DNN-enhanced system is input-to-state stable.

Note that, by examining (2.21) and (2.20), L1 is a constant characterizing the

maximum possible gain of the baseline system, while L4 is a constant associated

with the regression error of the DNN model. Hence, the condition in (2.24) implies

that if the regression error of the DNN module is sufficiently small, then the overall

DNN-enhancement control architecture is input-to-state stable. One can notice the

similarity between condition (2.24) and the well-known small gain theorem in robust

control [66].

In practice, one could estimate the gain of the system from data [67, 68, 69] and

use (2.24) as a certifying condition for training the DNN inverse module. However,

we note that, since we use the global Lipschitz property of the DNN to show stability,

this condition could be conservative. The globally Lipschitz activation function as-

sumption in Assumption (A3) and thus the condition in (2.20) are generally sufficient

(but not necessary) conditions for closed-loop stability.

2.4.5 Difference Learning Scheme for Improving the Training

Efficiency

In this subsection, we derive a condition that allows us to further improve the data-

efficiency of the proposed DNN-enhancement approach. This discussion is motivated

by the DNN design in [48], where the position terms in the DNN input and output

are taken relative to the current desired and actual positions in order to simplify

the training process. The basic idea of this difference learning scheme is that with

the relative positions (instead of the absolute positions), the function modeled by

the DNN becomes invariant under spatial translations, which reduces the amount

of data needed to cover the operation space. Based on the theoretical formulations

presented in the previous subsections, we derive in this section a necessary condition

2.4. DERIVATION AND THEORETICAL ANALYSIS 27

for the effectiveness of the difference learning scheme. This necessary condition will

be further illustrated with quadrotor experiments in Sec. 2.6.

In order to motivate this insight on the difference learning scheme, we first focus

our discussion on a SISO linear system represented by the transfer function represen-

tation in (2.16). Recall that, for system (2.16), the control law for achieving exact

tracking is described by (2.17), and the corresponding DNN input-output selection

for learning the system inverse is I = {yd(k − n + r : k + r), u(k − n + r : k − 1)}
and O = {u(k)}, where ‘:’ is used to abbreviate consecutive time indexes. With

the difference learning scheme, we aim to train a DNN that depends only on a

set of relative terms: ∆yd(k + p) := yd(k + p) − yd(k) for p ∈ {−n + r, ..., r} and

∆u(k+p) := u(k+p)−yd(k) for p ∈ {−n+ r, ..., 0}, where yd is the desired output, u

is the reference of the baseline system, k is the current time index, and p is a shift in

the time index. In this work, we aim to enhance the tracking performance of square

MIMO baseline systems, and we assume that there is a one-to-one correspondence

between the reference u and the output y, and hence a one-to-one correspondence

between the reference u and the desired output yd. For a position tracking system as

an example, the terms ∆yd and ∆u can be intuitively interpreted as the relative posi-

tion vectors from the current desired position yd(k) to a past/future desired position

yd(k + p) and a past reference position u(k + p).

Lemma 2.4.2 (Difference Learning for SISO Linear Systems). Consider a SISO lin-

ear baseline system (2.16) and the DNN-enhancement control architecture in Fig. 2.1.

A difference learning scheme can be applied to introduce translational invariance in the

inverse learning problem and thereby reduce the amount of data required for training

the DNN module if and only if the baseline system has a unity DC gain.

Proof. Starting from the control law in (2.17), it can be shown that by subtract-

ing yd(k) on both sides of the equation, and adding and subtracting 1
βn−r

yd(k),
1

βn−r

∑n−r−1
i=0 βiyd(k) and 1

βn−r

∑n−1
i=0 αiyd(k) on the right-hand side, (2.17) can be writ-

ten as

∆u(k) =
1

βn−r
∆yd(k + r) +

αn−1
βn−r

∆yd(k + r − 1) + · · ·+ α0

βn−r
∆yd(k − n+ r)

− βn−r−1
βn−r

∆u(k − 1)− βn−r−2
βn−r

∆u(k − 2)− · · · − β0
βn−r

∆u(k − n+ r)

+
1

βn−r

(
1−

n−r∑
i=0

βi +
n−1∑
i=0

αi

)
yd(k)︸ ︷︷ ︸

,s(yd(k))

.

(2.26)

28 CHAPTER 2. ADD-ON INVERSE LEARNING

In the above expression, the only non-relative time-dependent term is the last term

s(yd(k)) = 1
βn−r

(
1−

∑n−r
i=0 βi +

∑n−1
i=0 αi

)
yd(k) on the right-hand side. Thus, one may

express the control law for achieving exact tracking in terms of the relative terms ∆yd

and ∆u (and hence apply the difference learning scheme) if and only if s
(
yd(k)

)
= 0.

For arbitrary yd(k), the condition s
(
yd(k)

)
= 0 is equivalent to∑n−r

i=0 βi

1 +
∑n−1

i=0 αi
= 1. (2.27)

For system (2.16), the condition in (2.27) is equivalent to the condition that sys-

tem (2.16) has a unity DC gain, i.e., it achieves zero steady state errors for step

reference inputs.

In our work, we consider a baseline system with an underlying feedback controller

(Fig. 2.1). In practice, tracking step reference inputs is a common requirement for

controller designs, and this can be often achieved with well-established classical con-

troller design techniques [70]. As we will demonstrate in Sec. 2.6.5, when the baseline

system is able to track step reference inputs with sufficiently small errors, the differ-

ence learning scheme can significantly reduce the amount of data required for training

the DNN module.

In the discussion below, we prove the same result for the MIMO state space

formulation for the special case of a position/velocity-like system.

Definition 2.4.2 (Position/Velocity-Like System). System (2.1) is called

position/velocity-like if it has the following properties: (i) the output of the system y

is the first m elements of the state vector (i.e., x1, ..., xm); and (ii) for step reference

inputs, the remaining elements of the state vector (i.e., xm+1, ..., xn) are zero at steady

state.

Examples of position/velocity-like systems include but is not limited to mechanical

systems with a position-velocity state space (e.g., industrial manipulators). Similar

to the SISO transfer function scenario, we identify a necessary condition that allows

us to express the control law in (2.7) in relative terms ∆x(k) = x(k)−[yd(k)T 0 · · · 0]T ,

∆yd(k + r) = yd(k + r) − yd(k), and ∆u(k) = u(k) − yd(k). In particular, we prove

the following lemma.

Lemma 2.4.3 (Difference Learning for MIMO Linear Systems). Consider a

position/velocity-like MIMO system and the DNN-enhancement control architecture

in Fig. 2.1. A DNN design based on the state space approach (Remark 2.4.3) and the

2.4. DERIVATION AND THEORETICAL ANALYSIS 29

difference learning scheme is able to achieve exact tracking only if the baseline system

has zero steady state errors for step reference inputs.

Proof. Suppose by the way of contradiction that the DNN-based approach achieves

exact tracking for arbitrary feasible trajectories and the baseline system does not

achieve zero steady state error for an arbitrary step reference input u(k) = a, where

a ∈ Rm is a constant vector. Hence, we have

yss = Kuss = Ka, (2.28)

where K ∈ Rm×m is a constant non-zero matrix characterizing the DC gains of the

system, and K 6= Im by assumption, where Im denotes the identity matrix. Note that,

when K is a zero matrix, the system has zero DC gain; it can be easily shown that

the mapping {∆x(k),∆yd(k+ r)} → {∆u} is one-to-many and cannot be represented

by the DNN module [53]. Next, for the case where K is non-zero, by assumption, the

DNN module is able to achieve exact tracking yss = yd(k) for an arbitrary step input

yd(k) = b, where b ∈ Rm is a constant vector. With the difference learning scheme,

the inputs to the DNN module are ∆x and ∆yd and the output is ∆u. When exact

tracking is achieved, ∆x = 0 and ∆yd = 0, while ∆u = c, where c ∈ Rm is a constant

corresponding to the bias of the DNN model (i.e., the output of the DNN model

when the inputs are zero). At the steady state, the reference of the baseline system

is uss = b + c. From (2.28), the system output at the steady state is yss = K(b + c).

Since exact tracking is achieved by assumption, yss = b and

Kc = (Im −K)b. (2.29)

Since K is non-zero and K 6= Im by assumption, (2.29) implies that the bias of the

DNN, c, is correlated with the step input vector b. For a typical feedforward DNN, the

bias c is a fixed vector determined from the training algorithm. The dependency of the

bias c on the system desired output yd(k) = b leads to a contradiction. Thus, a DNN

module trained with the difference learning scheme cannot achieve exact tracking for

a baseline system for which the steady state error for step reference inputs is not

zero.

Note that, in the above discussion, the input and output of the DNN module are

taken relative to the current desired output yd(k). In practice, the input and output

of the DNN module can be alternatively taken relative to the current actual output

y(k) to additionally compensate for initial tracking errors or disturbances.

30 CHAPTER 2. ADD-ON INVERSE LEARNING

Based on the above theoretical results for linear systems, we present the following

important insight.

Remark 2.4.5 (Necessary Condition for Applying the Difference Learning Scheme).

In order to reduce the amount of training data, a difference learning scheme can be

applied to the input and output selection of the DNN module. However, as shown in

the theoretical analysis for the linear system formulations, for the DNN approach with

the difference learning scheme to be effective, the baseline system controller needs to

be designed such that the system response has zero or sufficiently small steady-state

errors for step reference inputs.

The insight above is motivated from the linear system formulations. Since non-

linear systems can be approximated by a set of piecewise linear/affine systems with

arbitrary accuracy [71], it is reasonable to expect that the necessary condition is also

required for the nonlinear system (2.2). In Sec. 2.6, we verify this necessary condition

for nonlinear systems with quadrotor experiments.

2.5 Simulation Results

In this section, we illustrate Remarks 2.4.2-2.4.4 by considering two linear MIMO

baseline closed-loop systems. The two systems have the same state equation:

x(k + 1) =

0.2 1 0

0 0.5 0

0 0 0.6

x(k) +

0 0

1 0

0 0.5

u(k). (2.30)

The output equations of the two systems are respectively defined in (2.31) and (2.32)

below:

y(k) =

[
0.35 0.35 0

0 0 0.5

]
x(k), (2.31)

y(k) =

[
−0.35 0.35 0

0 0 0.5

]
x(k). (2.32)

2.5. SIMULATION RESULTS 31

-4
-2
0
2

u 1

References of the Minimum Phase System (SS Approach)

Exact Inverse Reference from DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0
u 2

(a) References u of the minimum phase
system (2.31) with the state space ap-
proach (Remark 2.4.3). The RMS mod-
eling error of the DNN module is approx-
imately 7.8× 10−5.

-4

-2

0

2

y
1

Outputs of the Minimum Phase System (SS Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30

Time (s)

-4

-2

0

y
2

(b) Outputs y of the minimum phase sys-
tem (2.31). The RMS tracking errors
of the baseline system and the DNN-
enhanced system are approximately 1.0
and 2.5× 10−5, respectively.

Figure 2.2: The references and outputs of the minimum phase closed-loop sys-
tem (2.31) for a desired trajectory with yd,1(t) = sin

(
4π
33
t
)

+ cos
(
4π
41
t
)
− 1 and

yd,2(t) = sin
(
4π
23
t
)

+ cos
(
4π
21
t
)
− 1. From (a), the DNN module design based on

Remark 2.4.3 is able to approximate the system’s exact inverse equation (2.7) with
high accuracy; from (b), the reference computed by the DNN module is able to
compensate for the errors in the baseline system response and approximately achieve
exact tracking.

Note that the two systems we consider have identical dynamics and differ only in the

output equations and hence the locations of zeros.1 In particular, system (2.31) has

a stable (minimum phase) zero at −0.8, while system (2.32) has an unstable (non-

minimum phase) zero at 1.2. Both systems have three stable poles at {0.2, 0.5, 0.6}
and a vector relative degree of (1, 1).

Upon introducing the DNN architecture and training in Sec. 2.5.1, we first follow

the state space approach to select the input of the DNN module and show the necessity

of stability of the baseline system zero dynamics (Remark 2.4.2 and Remark 2.4.3) in

Sec. 2.5.2. After verifying the first two insights, we illustrate in Sec. 2.5.3 the efficacy

of the alternative DNN input selection derived from the transfer function formula-

tion (Remark 2.4.4). For this simulation study and with known system matrices, we

can compute (2.7) and use it as the ground truth to assess the proposed approach.

1Both system (2.31) and system (2.32) are controllable and observable and are thus minimal state
space realizations. The zeros of the MIMO systems are frequencies at which the system matrix of
the MIMO systems or the equivalent transfer matrices H(z) of the systems drop rank (see [72] for
more details). The locations of zeros (and poles) of the systems can be conveniently verified with
the Matlab command pzmap.

32 CHAPTER 2. ADD-ON INVERSE LEARNING

-20
0

20
u 1

References of the Nonminimum Phase System (SS Approach)
Exact Inverse Reference from DNN

0 5 10 15 20 25 30
Time (s)

-10
0

10

u 2

(a) References u of the nonminimum
phase system (2.32) with the state space
approach (Remark 2.4.3). The RMS
modeling error of the DNN module is ap-
proximately 14.5.

-2

0

2

4

y
1

Outputs of the Nonminimum Phase System (SS Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30

Time (s)

-4

-2

0

y
2

(b) Outputs y of the nonminimum phase
system (2.32). The RMS tracking er-
rors of the baseline system and the DNN-
enhanced system are approximately 2.0
and 4.6, respectively.

Figure 2.3: The reference and outputs of the nonminimum phase closed-loop sys-
tem (2.32) for the desired trajectory shown in Fig. 2.2. Due to the inherent instability
of the nonminimum phase system, the reference u for achieving exact tracking is un-
bounded [61]. From (a), the DNN module consequently cannot effectively model the
exact inverse of system (2.32); from (b), when the necessary condition of achieving
stable zero dynamics in Remark 2.4.2 is violated, the DNN inverse learning approach
cannot be directly applied to enhance the tracking performance of the baseline system.

2.5.1 Simulation Setup

For comparison purposes, the DNN architecture and training trajectories are identical

for all simulation cases presented in this section. Matlab’s Neural Network Toolbox

is used for implementing the DNN modules. The DNNs are a fully-connected feed-

forward networks with two hidden layers; each hidden layer consists of 20 hyperbolic

tangent activation units. The training trajectories are 25 sinusoidal trajectories with

different combinations of amplitudes and frequencies; the amplitudes range between

1 and 5, and the frequencies range between 0.024 Hz and 1.25 Hz. Note that the

architecture of the DNN modules (i.e., the number of hidden layers and the number

of neurons) is chosen such that the DNNs have sufficient modeling complexity. In this

study, we set aside a part of the training data as the validation set and use a standard

validation procedure to ensure that the DNN modules do not overfit or underfit the

training data [73]. We further test the sufficiency of the training data by running the

DNN-enhanced system on untrained trajectories. In general, the DNN architecture

and the training trajectories are not restricted to the particular choices we made, but

one should validate the trained DNN module for its generalizability.

As shown in Fig. 2.1, the baseline systems we consider are feedback systems with

reference input u and output y. Our goal is to use a DNN module to enhance the

2.5. SIMULATION RESULTS 33

tracking performance of a baseline system by adjusting the reference input u sent to

the baseline system. In the training phase, the responses of the baseline systems (x(k),

y(k), u(k)) are recorded at 70 Hz for constructing the training datasets, which consist

of labeled input-output pairs (I, O). The DNN input I and output O are defined

for each simulation case as follows: In the first set of simulations, the state space

approach (Remark 2.4.3) is examined. For both system (2.31) and system (2.32), the

input and output of the DNN module are selected as Iss = {x(k), yd,1(k+ 1), yd,2(k+

1)} and O = {u(k)}, where yd,i denotes the i-th element of yd. In the second set of

simulations, we focus on the minimum phase system (2.31). Based on the transfer

function approach (Remark 2.4.4), the input and output of the DNN module are

Itf = {yd,1(k− 2 : k + 1), yd,2(k− 2 : k + 1), u(k− 2 : k− 1)} and O = {u(k)}, where

‘:’ abbreviates consecutive discrete-time indexes. Note that, in the construction

of the training dataset, the data pairs (I, O) are randomly sampled from the 25

training trajectories with balanced proportions to prevent the model from overfitting

a particular frequency.

The Levenberg-Marquardt algorithm is used for training the weight and bias pa-

rameters of the DNN module. In the first set of simulations, the training objective

is to minimize the mean squared error between the targets O and the DNN outputs.

For the second set of simulations, we additionally include an L2 regularization term in

the training objective function to help the training algorithm eliminate any unneces-

sary dimensions in the DNN input Itf ; the regularization constant is set to 0.005. In

the training of each DNN module, 70% of the data is used for optimizing the model

parameters and the rest is used for model validations. The generalizability of the

DNN modules is further verified by testing the tracking performance of the overall

DNN-enhanced system on test trajectories that differ from the training trajectories.

2.5.2 Simulation 1: Illustrations of Underlying Function and

Necessary Condition

In this subsection, we illustrate Remark 2.4.2 and Remark 2.4.3 by using the

state space approach and comparing the DNN-enhanced performance of the min-

imum phase system (2.31) and the nonminimum phase system (2.32). For this

simulation illustration, the systems’ performances are compared on a test trajec-

tory that differs from those in training: yd,1(t) = sin
(
4π
33
t
)

+ cos
(
4π
41
t
)
− 1 and

yd,2(t) = sin
(
4π
23
t
)

+ cos
(
4π
21
t
)
− 1.

The references and outputs of the DNN-enhanced tracking for system (2.31) and

34 CHAPTER 2. ADD-ON INVERSE LEARNING

-4
-2
0
2

u 1

References of the Minimum Phase System (TF Approach)

Exact Inverse Reference from DNN

0 5 10 15 20 25 30
Time (s)

-4

-2

0

u 2

(a) References u of the minimum phase
system (2.31) with the transfer function
approach (Remark 2.4.4). The RMS
modeling error of the DNN module is ap-
proximately 1.2× 10−2.

-4

-2

0

2

y
1

Outputs of the Minimum Phase System (TF Approach)

Desired Baseline With DNN

0 5 10 15 20 25 30

Time (s)

-4

-2

0

y
2

(b) Outputs y of the minimum phase sys-
tem (2.31). The RMS tracking errors
of the baseline system and the DNN-
enhanced system are approximately 1.0
and 4.2× 10−3, respectively.

Figure 2.4: The references and outputs of the minimum phase closed-loop sys-
tem (2.31) for the desired trajectory shown in Fig. 2.2. From (a), the DNN module
design based on the transfer function approach (Remark 2.4.4) is an equivalent ap-
proximation of the exact inverse equation (2.7); from (b), as with the state space
approach (Fig. 2.2b), exact tracking is approximately achieved with the DNN module
design based on the alternative transfer function formulation.

system (2.32) are shown in Fig. 2.2 and Fig. 2.3, respectively. It can be seen from

Fig. 2.2a that, by selecting the DNN input as I = {x(k), yd(k + r)}, the DNN is

able to effectively generalize the training data collected from the minimum phase

system (2.31), and outputs references (blue solid line) that coincide with the refer-

ence computed based on the exact inverse in (2.7) (red dashed line). With (2.7)

as the ground truth, the RMS modeling error of the DNN module is approximately

7.8× 10−5. From Fig. 2.2b, we see that the reference computed by the DNN module

compensates for the magnitude errors in the baseline system response (grey dotted

line), and leads to approximately exact tracking (blue solid line and red dashed line).

On this particular test trajectory, the addition of the DNN module reduces the RMS

tracking error from approximately 1.0 to approximately 2.5 × 10−5. In this simu-

lated setting, the performance of the proposed DNN approach is only limited by the

modeling accuracies and numerical precisions. In contrast to the minimum phase

case, the reference for achieving exact tracking is unbounded in the nonminimum

phase system case (2.32) due to the inherent instabilities of the system inverse dy-

namics [61]. In the nonminimum phase case reflected in Fig. 2.3, though with the

same architecture and training, the DNN module cannot effectively model the exact

inverse in (2.7) (Fig. 2.3a) and leads to worse performance as compared to the baseline

system (Fig. 2.3b).

2.6. QUADROTOR EXPERIMENTS 35

2.5.3 Simulation 2: Illustrations of the Transfer Function

Approach

In the previous subsection, we showed the effectiveness of the state space approach

for designing the DNN module to enhance the tracking performance of the minimum

phase system (2.31). In this subsection, we provide a brief discussion on a DNN

design based on the equivalent transfer function formulation (Remark 2.4.4).

Fig. 2.4 shows the references and outputs of the system (2.31) with the DNN design

based on Remark 2.4.4. From Fig. 2.4a, we can see that similar to the state space

approach, the DNN module design based on the transfer function approach (blue solid

line) is able to approximate the reference from the exact inverse equation (2.7) (red

dashed line). For this particular test trajectory, the RMS modeling error of the DNN

is approximately 1.2× 10−2. Consequently, as shown in Fig. 2.4b, the output of the

DNN-enhanced system (blue solid line) also coincides with the desired trajectory (red

dashed line). The RMS tracking error of the DNN-enhanced system is approximately

4.2 × 10−3. This simulation example shows that the transfer function approach can

be equivalently used to enhance the tracking performance of the minimum phase

system (2.31) without relying on the knowledge or estimation of the full state as

required by the state space approach.

2.6 Quadrotor Experiments

This section presents the results of quadrotor experiments designed to verify the

theoretical insights derived in Sec. 2.4. In order to test the effectiveness of the

DNN module design based on the provided theoretical insights, we adopt the fly-

as-you-draw application setup from [48], where visitors are invited to draw de-

sired trajectories on a mobile device, and the desired trajectories are tracked by

a quadrotor vehicle. A demonstration video of the experiments is available at http:

//tiny.cc/impromptuTracking, and the hand drawings used for evaluating the pro-

posed DNN-enhancement trajectory tracking approach are shown in Fig. 2.5.

In the following discussion, we first introduce the experimental setup, the control

architecture, and the DNN architecture and training procedures in Sec. 5.6.1. In

Sec. 2.6.2 we verify the proposed DNN input-output design and demonstrate the

generalizability of the DNN module on the same 30 test trajectories. Upon verifying

the proposed DNN input-output design, in Sec. 2.6.4 we show that the performance of

the proposed approach can be pushed further by improving the representativeness of

http://tiny.cc/impromptuTracking
http://tiny.cc/impromptuTracking

36 CHAPTER 2. ADD-ON INVERSE LEARNING

the DNN training dataset. This section is concluded with illustrations of the improved

training data efficiency of the difference-learning scheme in Sec. 2.6.5.

Note that, for the convenience of the discussion, we denote the desired trajectory

with a subscript d, the references of the baseline system with a subscript r, and the

measured states of the quadrotor with a subscript a.

2.6.1 Experiment Setup

The objective of the experiments is to design a control system such that the center of

mass of a quadrotor vehicle pa(k) tracks desired trajectories pd(k) generated based

on arbitrary hand-drawings with high accuracy from the first attempt. In the ex-

periments, we use Parrot AR.Drone 2.0 as the testing platform and implement the

control algorithm in the Robot Operating System (ROS) environment.

2.6.1.1 Desired Hand-drawn Test Trajectories

The desired trajectories to be tracked by the quadrotor are generated with the fly-as-

you-draw application [48]. In particular, in order to generate the desired trajectories,

we invite visitors to draw on a mobile device, which gives us sets of discrete points

sampled at fixed time intervals along the hand-drawings. The distance between two

consecutive points along a hand-drawing is proportional to the drawing speed. Given

the set of sampled points from a hand-drawing, the desired position trajectory for the

quadrotor is then interpolated using the sampling interval of the position controller.

The speed along the desired trajectory is scaled based on a predefined maximum

speed vmax and a predefined maximum acceleration amax, which are defined such that

the generated trajectory is feasible for the quadrotor to track.

Given a desired trajectory generated from a hand-drawing, we use the root-mean-

square (RMS) position tracking error as the measure for evaluating the tracking per-

formance of the quadrotor

etraj =

(
1

N

N∑
k=1

||pd(k)− pa(k)||2
) 1

2

, (2.33)

where N is the number of time steps for which the trajectory is defined.

2.6. QUADROTOR EXPERIMENTS 37

2.6.1.2 Control Architecture

The quadrotor vehicle has 12 states: translational positions p = (x, y, z), trans-

lational velocities v = (ẋ, ẏ, ż), attitudes θ = (φ, θ, ψ), and rotational veloci-

ties ω = (p, q, r). The baseline controller of the quadrotor vehicle consists of (i)

an off-board position controller that receives the reference positions and velocities

(pr and vr) and outputs the desired roll angle, pitch angle, yaw rate and z-velocity

commands (φcmd, θcmd, rcmd, and żcmd) at 70 Hz; and (ii) an on-board attitude con-

troller that adjusts motor thrusts based on the roll angle, pitch angle, yaw rate and

z-velocity commands at 200 Hz. Of particular interest is the off-board position con-

troller, which consists of a nonlinear transformation and PD control; from the internal

model principle, it is known that this type of controller cannot be tuned to achieve

perfect tracking for arbitrary desired reference frequencies [24]. We aim to enhance

the baseline position controller with our proposed DNN add-on module, which models

the output of the inverse dynamics of the baseline control system. In the experiments,

we introduce a DNN module design based on Remark 2.4.3 to adjust the position ref-

erence pr and the velocity reference vr sent to the baseline controller, and compare

the tracking performance of the DNN-enhanced controller against that of the baseline

controller. As in previous work [48] and for the robustness of implementation against

instability, the DNN-loop in the experiments runs at 7 Hz, which is 10 times slower

than the baseline controller.

In the implementation of our baseline position controller and the DNN module, the

states of the quadrotor are estimated based on a Vicon motion capture system running

at 200 Hz. The onboard attitude controller of the ARDrone relies only on onboard

sensing [74], and the onboard attitude estimation and control modules together are a

black box for our baseline position controller and DNN module implementation.

2.6.1.3 Neural Network Architecture and Training

For comparison purposes, the DNN modules used in the experiments have the same

architecture and training procedure as in [48]. The DNN modules are fully connected

and have four hidden layers of 128 ReLU neurons, which are 1-Lipschitz functions;

the Python TensorFlow library is used for implementing the DNN module.

3
8

C
H

A
P

T
E

R
2.

A
D

D
-O

N
IN

V
E

R
S

E
L

E
A

R
N

IN
G

Traj. 1 Traj. 2 Traj. 3 Traj. 4 Traj. 5 Traj. 6 Traj. 7 Traj. 8 Traj. 9 Traj. 10

Traj. 11 Traj. 12 Traj. 13 Traj. 14 Traj. 15 Traj. 16 Traj. 17 Traj. 18 Traj. 19 Traj. 20

Traj. 21 Traj. 22 Traj. 23 Traj. 24 Traj. 25 Traj. 26 Traj. 27 Traj. 28 Traj. 29 Traj. 30

Figure 2.5: Illustrations of 30 hand-drawn trajectories for testing the DNN-enhancement approach [48].

2.6. QUADROTOR EXPERIMENTS 39

To construct training datasets, we record the response of the robot baseline system

on one or multiple training trajectories. For the results in Sec. 2.6.2-2.6.3, in order to

fairly compare the proposed approach with [48], the DNN modules are trained on a

400-second 3-dimensional sinusoidal trajectory similar to the trajectory used in [48];

for the results in Sec. 2.6.4-2.6.5, to explore the impact of training dataset choices

on the performance of the DNN module, we further incorporated 30 arbitrary hand-

drawn trajectories in the training process (more details are included in Sec. 2.6.4). For

each training trajectory, the state, the input, and the output of the robot baseline

system are recorded at a sampling rate of 7 Hz. The recorded data is then used

to construct paired input-output datasets based on the DNN module input-output

selection (2.34)-(2.35) or (2.36)-(2.37). Of all the training data collected from the

baseline system, 90% is randomly selected for training and the remaining is used

for validation. The generalizability of the DNN modules for enhancing the tracking

performance on arbitrary trajectories is tested in closed-loop with the baseline system

on 30 new hand-drawn trajectories.

The training loss function is the squared error between the DNN output and the

labeled output in the training dataset. The Adam optimizer [75] is used for optimizing

the weight parameters of the DNN. A dropout rate of 0.5 is used to improve the

generalizability of the DNN to unseen inputs [76].

We note that, in our setup, the training of the DNN module is a standard super-

vised training problem, and the hyperparameters of the DNN module (e.g., the width

and depth of the network) could be selected using a validation set. Based on our

experience, the performance of the DNN module is not very sensitive to the hyper-

parameter selection, but achieving a satisfactory performance requires a sufficiently

rich training dataset. We further explore this aspect in Sec.2.6.4 and Chapter 4.

2.6.2 Experiment 1: DNN Input-Output Design

Through experimental trial-and-error, [48] found that a DNN module with the follow-

ing input and output can effectively improve the performance of the baseline system

for tracking arbitrary hand-drawn trajectories:

I1 = {pd(k + 4)− pa(k), pd(k + 6)− pa(k), va(k), vd(k + 4),

vd(k + 6), θa(k), θd(k + 4), θd(k + 6), ωa(k), ωd(k + 4),

ωd(k + 6), z̈a(k), z̈d(k + 4), z̈d(k + 6)} (2.34)

40 CHAPTER 2. ADD-ON INVERSE LEARNING

O1 = {pr(k)− pd(k), vr(k)− vd(k)} (2.35)

On the 30 hand-drawn trajectories shown in Fig. 2.5, the average RMS error reduction

achieved by the DNN module is approximately 43%. In order to verify Remark 2.4.3,

we repeat the 30 test trajectories from [48] with a DNN module design based on

the proposed input-output selection and compare the improved tracking performance

with that achieved in [48]. Note that we repeated the experiments in [48] on the

quadrotors used for this work for comparability.

In order to apply our insights, we first performed simple step response experiments

and identified the following properties of the baseline system:

(P1) the responses of the baseline system are approximately decoupled in the x-, y-,

and z-direction;

(P2) the relative degrees of the baseline system in the x-, y-, and z- direction are 4,

4, and 3, respectively; and

(P3) zero steady state error for step reference inputs is approximately achieved in

the three directions.

Given properties (P1)-(P3), we assume decoupled dynamics in the x-, y-, and z-

direction and apply Remark 2.4.3 with the difference learning scheme to obtain the

following input and output selection of the DNN module:

I2 = {xd(k + 4)− xa(k), yd(k + 4)− ya(k), zd(k + 3)− za(k), ẋd(k + 3)− ẋa(k),

ẏd(k + 3)− ẏa(k), żd(k + 2)− ża(k), θa(k), ωa(k)} (2.36)

O2 = {pr(k)− pa(k), vr(k)− va(k)} (2.37)

We note two differences between the DNN from [48] and the proposed DNN de-

sign based on Remark 2.4.3. The first is the DNN input selection. In comparison

with the DNN from [48], which has 36 inputs (#I1 = 36, where # denotes cardinal-

ity), the DNN design based on Remark 2.4.3 has only 12 inputs (#I2 = 12). Based

on the inverse-dynamics formulation, the input selection I2 represents the necessary

and sufficient inputs that allow the DNN add-on module to achieve enhanced track-

ing performance. Another difference is in the application of the difference learning

scheme for the two DNN designs. In particular, for the DNN design from [48], the

position elements in the input I1 are taken relative to the actual output values (sub-

scripted with a), and the position elements in the output O1 are taken relative to

the desired output values (subscripted with d). For the proposed DNN design based

2.6. QUADROTOR EXPERIMENTS 41

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

x (m)

0.5

1

1.5

z
 (

m
)

Path in the xz-Plane

Desired With DNN - 36 Inputs (Li et al. 2017)

Baseline With DNN - 12 Inputs (Proposed)

Figure 2.6: A comparison of the tracking performance enhancements between the
DNN module from [48] and the DNN module design based on Remark 2.4.3 for a
hand-drawn test trajectory (Traj. 24 in Fig. 2.5). On this test trajectory, the RMS
tracking error of the baseline system is approximately 0.41 m. The RMS tracking
errors of the baseline system enhanced by the DNN module from [48] and the proposed
DNN module design based on Remark 2.4.3 are 0.23 m and 0.14 m respectively, which
correspond to 45% and 67% error reductions.

-2

-1

0

1

2

x
 (

m
)

Trajectories in the x- and z-Direction

Desired With DNN - 36 Inputs (Li et al. 2017)

Baseline With DNN - 12 Inputs (Proposed)

0 5 10 15 20

Time (s)

0

0.5

1

1.5

2

z
 (

m
)

Figure 2.7: A comparison of the x- and z-position trajectories for a hand-drawn test
trajectory (corresponding to Fig. 2.6). From the plots, the DNN module from [48]
and the DNN module trained based on Remark 2.4.3 both tend to correct the delays
and magnitude errors of the baseline system response. When compared to the DNN
from [48], the proposed DNN design based on Remark 2.4.3 has two thirds fewer
inputs while achieving better performance enhancements.

on Remark 2.4.3, the relative terms in the input I2 and output O2 are consistently

taken with respect to the actual values (subscripted with a). Based on the theo-

retical discussions of Remark 2.4.5, we expect the consistency of the relative terms

in the proposed design would further improve the capability of the DNN module in

correcting for any deviations from the desired trajectories.

We first present the performance comparison between the DNN from [48] and

the proposed DNN on one of the test trajectories (Figs. 2.6, 2.7, and 2.8). We then

summarize the comparison between the two DNN designs on 30 hand-drawn test

42 CHAPTER 2. ADD-ON INVERSE LEARNING

0

0.2

0.4

0.6

x
 e

rr
o

r
(m

)

Tracking Error in the x- and z-Direction

With DNN - 36 Inputs (Li et al. 2017) Baseline

With DNN - 12 Inputs (Proposed)

0 5 10 15 20

Time (s)

0

0.2

0.4

0.6

z
 e

rr
o

r
(m

)

Figure 2.8: The tracking errors of the x- and z-position (|x(k) − xd(k)| and |z(k) −
zd(k)|) corresponding to Fig. 2.7. The DNN module from [48] and the DNN module
trained based on Remark 2.4.3 both effectively reduce the peak tracking errors of the
baseline system. The peak errors for the baseline system in the x- and z-direction are
approximately 0.62 m and 0.21 m, respectively. For the DNN design from [48], the
peak tracking errors in the x- and z-direction are reduced to approximately 0.27 m
and 0.09 m, while for the proposed DNN, the peak tracking errors in the x- and
z-direction are reduced to approximately 0.21 m and 0.15 m.

Trajectory Tracking Performance Comparison on 30 Hand-Drawn Test Trajectories

5
8
%

4
5
% 4
5
%

6
2
%

3
2
%

6
8
%

5
0
%

5
0
%

5
0
%

4
4
%

5
0
%

6
0
%

4
5
%

5
9
%

4
6
%

5
3
%

5
8
%

5
7
% 4
8
%

3
6
%

4
4
%

6
4
%

4
4
%

4
5
%

4
0
%

4
2
%

3
5
%

4
3
%

5
0
%

4
5
%

5
0
%

6
4
% 6
2
%

6
4
%

4
8
%

5
5
%

5
7
%

6
3
%

5
9
%

6
6
%

5
7
%

6
1
% 5
8
% 4
9
%

5
0
%

5
7
% 4
6
% 2

5
%

4
9
%

4
8
%

4
4
%

6
1
%

3
9
%

6
7
%

5
5
%

7
1
%

4
3
%

6
0
%

4
5
%

5
6
%

0.34

0.17

0.15

Tra
j.
1

Tra
j.
2

Tra
j.
3

Tra
j.
4

Tra
j.
5

Tra
j.
6

Tra
j.
7

Tra
j.
8

Tra
j.
9

Tra
j.
10

Tra
j.
11

Tra
j.
12

Tra
j.
13

Tra
j.
14

Tra
j.
15

Tra
j.
16

Tra
j.
17

Tra
j.
18

Tra
j.
19

Tra
j.
20

Tra
j.
21

Tra
j.
22

Tra
j.
23

Tra
j.
24

Tra
j.
25

Tra
j.
26

Tra
j.
27

Tra
j.
28

Tra
j.
29

Tra
j.
30

Test Trajectory Index

0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
 T

ra
c
k
in

g
 E

rr
o

r
(m

)

Baseline With DNN - 36 Inputs (Li et al. 2017) With DNN - 12 Inputs (Proposed)

Figure 2.9: Comparisons of the tracking performance enhancements between the DNN
module from [48] (with 36 inputs) and the proposed DNN module design based on
Remark 2.4.3 (with 12 inputs). In the two sets of experiments, the percentage of
the RMS tracking error reductions achieved by the DNN module are indicated above
the corresponding bars; the mean RMS error over the 30 trajectories are indicated
by the horizontal dashed lines. Despite having two thirds fewer inputs, the proposed
DNN design based on Remark 2.4.3 yields a performance comparable to the DNN
from [48]. On the 30 test trajectories, the average RMS error reduction is 49% for
the DNN from [48] and 54% for the proposed DNN design based on Remark 2.4.3.

trajectories (Fig. 2.9). The test trajectories are generated based on the procedure

described in Sec. 2.6.1.1. The maximum speed and maximum acceleration of the

trajectories are vmax = 0.6 m/s and amax = 2.0 m/s2, respectively. Note that, for the

experiments, the DNN modules are trained on a 400-second 3-dimensional sinusoidal

2.6. QUADROTOR EXPERIMENTS 43

Figure 2.10: The tracking performance of (i) the baseline system, (ii) the system
enhanced by the DNN module design from [48], and (iii) the system enhanced by the
DNN module design based on Remark 2.4.3 as the trajectory speed increases. The
solid lines and the shaded regions in the plot correspond to the mean and the standard
deviation of the position error pd − pa along the test trajectories. In contrast, the
tracking error of the baseline system increases significantly with trajectory speed,
while the tracking error of the system enhanced with the proposed DNN remains at
a lower constant level. The average RMS tracking error over the presented trials is
0.35 m for the baseline system, 0.19 m for the system with the DNN module design
from [48], and 0.14 m for the system with the DNN design based on Remark 2.4.3.

trajectory similar to that used in [48]. In order to establish a fair comparison, we

use the same DNN architecture, training data, and training algorithm for the DNN

design based on [48] and the DNN design based on Remark 2.4.3; the only difference

between the two DNNs is the input-output selection.

From Fig. 2.6 and Fig. 2.7, it can be seen that both the DNN from [48] (green

solid line) and the DNN design based on Remark 2.4.3 (blue solid line) are able to

reduce the time delays and magnitude errors of the baseline system tracking response

(grey dotted line) and lead to quadrotor tracking paths that are closer to the desired

hand-drawing (red dashed line). On this test trajectory, the RMS tracking error

reduction achieved by the DNN from [48] and the proposed DNN are 45% and 67%,

respectively. The trajectory tracking error comparison depicted in Fig. 2.8 shows that

the proposed DNN design based on Remark 2.4.3 achieves similar error reductions to

the DNN design from [48] while having far fewer inputs.

Fig. 2.9 summarizes the performance comparison between the two DNN modules

on the 30 hand-drawn test trajectories studied in [48] (see Fig. 2.5). The plot shows

that the proposed DNN module design based on Remark 2.4.3 (blue bars) leads to

similar tracking performance as the DNN module from [48] (green bars). On the 30

test trajectories, the mean RMS error of the baseline system enhanced by the DNN

from [48] is approximately 0.17 m, and that of the baseline system enhanced by the

44 CHAPTER 2. ADD-ON INVERSE LEARNING

proposed DNN is approximately 0.15 m. The corresponding average tracking error

reduction achieved by the DNN from [48] and that design based on Remark 2.4.3 are

49% and 54%, respectively.

From this set of experiments, we verify Remark 2.4.3 on the proposed DNN input

selection. Although the input dimension is reduced by two thirds as compared with

the DNN from [48], the DNN module design based on the derived theoretical insight

can effectively enhance the quadrotor’s baseline system performance. The comparison

with the results from [48] further validates the generalizability of the proposed DNN

for tracking arbitrary untrained trajectories impromptu.

2.6.3 Experiment 2: Generalization to Different Trajectory

Speeds

In this subsection, we examine the performance of the baseline system and the DNN-

enhanced systems for different operating speeds. In particular, we use the trajectory

shown in Fig. 2.6 as the test trajectory and scale the time-parameterized trajectory

based on a set of specified maximum speeds vmax = {0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8}m/s.

Fig. 2.10 summarizes the performance of (i) the baseline system, (ii) the system

enhanced with the DNN module design from [48], and (iii) the system enhanced with

the DNN module design based on our Remark 2.4.3. As can be seen from the plot,

the tracking performance of the baseline system (grey) degrades quickly as the speed

of the test trajectory increases. In contrast, the tracking errors of the systems with

the DNN modules (green and blue) remain relatively at a lower constant level. The

average RMS tracking error over the trials presented in Fig. 2.10 is 0.35 m for the

baseline system, 0.19 m for the system enhanced with the DNN design from [48], and

0.14 m for the system enhanced with the DNN design based on Remark 2.4.3.

As we discussed in Sec. 2.4.2, the DNN module in our framework represents the

inverse of the baseline system and, theoretically, establishes an identity map from the

desired output yd to the actual output of the system y. In the quadrotor experiments,

we demonstrate the efficacy of the proposed DNN module approach for reducing the

tracking error of the baseline system across multiple operating speeds. We note that

the effectiveness of the DNN module generally relies on having training data that

sufficiently covers the range of operating speeds of interest.

2.6. QUADROTOR EXPERIMENTS 45

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 62%

(a) DNN trained on 400-s sinusoidal trajectory [48]

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15
C

o
u

n
t

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 62%(b) Proposed DNN trained on 400-s sinusoidal trajectory

Distributions of RMS Tracking Error Percent Reductions

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 49%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 54%

18 25 32 39 46 53 60 67 74 81 88

RMS Tracking Error Reduction (%)

0

5

10

15

C
o

u
n

t

Mean = 62%

(c) Proposed DNN trained on 400-s sinusoidal trajectory and 30 hand-drawn trajectories

Figure 2.11: A comparison of the tracking error reduction achieved by (a) the DNN
used in [48] and trained on a 400-second sinusoidal trajectory, (b) the proposed DNN
designed based on Remark 2.4.3 and trained on the 400-second sinusoidal trajectory,
and (c) the proposed DNN designed based on Remark 2.4.3 and trained on the 400-
second sinusoidal trajectory and 30 additional hand-drawn trajectories. Note that,
for the last case (c), the 30 additional hand-drawn trajectories used for training are
different from the 30 test trajectories. The mean percent error reduction for each
distribution is indicated by the vertical dashed line.

2.6.4 Experiment 3: DNN Training Dataset

In the previous set of experiments, the performance of the DNN from [48] and the

proposed DNN are compared on the basis of training on 400-second sinusoidal trajec-

tories. These trajectories have gradually increasing amplitudes but fixed frequencies

in the x-, y-, and z-direction [48]. In this subsection, we show that the performance

enhancement achieved by the proposed DNN design can be further improved with a

richer training dataset. In particular, we compare two training datasets constructed

from the baseline system responses to different training trajectories:

46 CHAPTER 2. ADD-ON INVERSE LEARNING

• Training Dataset 1 based on a 400-second sinusoidal training trajectory, and

• Training Dataset 2 based on the 400-second sinusoidal training trajectory from

Training Dataset 1 and 30 additional hand-drawn trajectories.

Note that the 30 hand-drawn trajectories in Training Dataset 2 are different from

the 30 trajectories (Fig. 2.5) for evaluating the performance of the DNNs. By adding

hand-drawn trajectories to the DNN training, we expect to increase the similarity

between the DNN inputs encountered at the training time and the test time. In par-

ticular, we expect the arbitrary training hand-drawn trajectories to capture a richer

set of cases (e.g., sharp edges) that are nontrivial to define with analytical expres-

sions. By having a more representative training dataset, we can then further reduce

the generalization error of the DNN module for impromptu tracking performance

enhancements.

Fig. 2.11 shows the performance comparison of three DNN-enhanced systems on

the 30 test hand-drawn trajectories (Fig. 2.5). From the previous subsection, we

show that, on average, the DNN with the proposed inputs (middle histogram in

Fig. 2.11) leads to better performance as compared with the DNN from [48] (top

histogram in Fig. 2.11). When comparing the proposed DNN trained with Training

Dataset 1 (middle histogram in Fig. 2.11) and Training Dataset 2 (bottom histogram

in Fig. 2.11), we see that the inclusion of the additional hand-drawn trajectories in

training further improves the performance of the DNN-enhanced system in tracking

arbitrary hand-drawn trajectories. Overall, the proposed DNN trained with Training

Dataset 2 increases the average RMS tracking error reduction by 8% as compared

with the proposed DNN trained with Training Dataset 1.

We note that, as similarly discussed in [49], the learning performance of the DNN

approach is limited by the non-repeatable or stochastic error in the baseline system.

More explicitly, the non-repeatable or stochastic error corresponds to the variations

we see in the baseline system output when an identical reference is given to the

baseline system multiple times. In our experimental setup, one primary source of

the stochastic error is the noise in the onboard IMU- and camera-based attitude

estimation and control, which we do not have direct access to. Other sources of the

stochastic error also include the process noise present in the quadrotor system. In

our experiments, the proposed DNN module trained with Training Dataset 2 reduces

the average tracking error of the quadrotor on the 30 hand-drawn trajectories to

approximately 0.07 m to 0.15 m. This performance is comparable to the standard

deviation of the position error of the quadrotor at hover, which is an estimate of the

inherent noise in the system and serves as a lower bound on the achievable tracking

2.6. QUADROTOR EXPERIMENTS 47

accuracy. We expect our DNN to achieve lower tracking errors if the response of the

baseline system could be made more repeatable.

2.6.5 Experiment 4: Difference Learning

In Sec. 2.4.5, we theoretically showed that, in order to apply the difference learning

scheme to improve the data efficiency of the DNN training, the baseline system needs

to achieve zero steady state error for step reference inputs. In this subsection, we first

illustrate the necessity of the condition by applying the difference learning scheme to

DNN modules to enhance (i) the original baseline system where zero steady state error

for step reference inputs is achieved, and (ii) a modified baseline system where the

necessary condition is not achieved. In the experiment, the modified baseline system

is obtained by multiplying the reference signals zr sent to the original baseline system

by a factor of 0.5. The baseline and DNN-enhanced tracking performance for the two

systems are shown in Fig. 2.12. The plots show that for the original baseline system

(bottom panel), where zero steady state error for step reference inputs is achieved, the

DNN with the difference learning scheme is able to effectively enhance the tracking

performance of the baseline system. However, as expected from Remark 2.4.5, for

the modified baseline system (top panel), where the zero steady state error condition

is not satisfied, the DNN trained with the difference learning scheme only partially

compensates for the magnitude error and the bias of the modified baseline system.

In order to evaluate the effectiveness of the proposed difference learning scheme

for improving the training data efficiency, we next compare a DNN module trained

with and a DNN trained without the difference learning scheme. Fig. 2.13 shows a

comparison of the DNN modules trained with (blue) and without (red) the difference

learning scheme for enhancing the tracking performance of the quadrotor baseline

system where zero steady state error for step reference inputs is achieved. In the plot,

the RMS tracking errors of the DNN-enhanced systems are compared as the amount

of training data varies. Note that, in order to prevent overfitting, the training datasets

are randomly sampled from a large training dataset (Training Dataset 2). Here, we use

Traj. 24 (Fig. 2.5) as the test trajectory for evaluating the performance of the DNN-

enhanced systems. Fig. 2.13 shows that, for the DNN without the difference learning

scheme (red), the RMS tracking increases quickly as the amount of training data

reduces. In contrast, the performance of the DNN trained with the difference learning

scheme (blue) drops more gradually as the amount of training data decreases. The

DNN trained with the difference learning scheme reaches the best performance of the

48 CHAPTER 2. ADD-ON INVERSE LEARNING

0

1

2

z
 (

m
)

Position Trajectory in the z-Direction

S
y
s
te

m
 w

it
h
 N

o
n
-Z

e
ro

S
te

a
d
y
 S

ta
te

 E
rr

o
r

fo
r

S
te

p
 I
n
p
u
ts

Desired Baseline With DNN

0 5 10 15 20 25 30

Time (s)

0

1

2

z
 (

m
)

S
y
s
te

m
 w

it
h
 A

p
p
ro

x
im

a
te

ly
 Z

e
ro

S
te

a
d
y
 S

ta
te

 E
rr

o
r

fo
r

S
te

p
 I
n
p
u
ts

Figure 2.12: A comparison of the difference learning scheme as applied on: (i) a
baseline system for which zero steady state error for step reference inputs is not
achieved (top); and (ii) a baseline system for which zero steady state error for step
reference inputs is achieved (bottom). When the necessary condition of having a
baseline system that achieves zero steady state error for step reference inputs is not
satisfied (see Remark 2.4.5), the DNN trained with the difference learning scheme
cannot effectively compensate for the errors of the baseline system response.

0.5 1 5 20 100

Percentage of Training Dataset 2 (%)

0.1

0.2

0.3

0.4

0.5

R
M

S
 T

ra
c
k
in

g
 E

rr
o
r

o
n
 T

ra
j.
 2

4
 (

m
)

RMS Tracking Error vs. Amount of Training Data

Baseline

with difference learning

without difference learning

Figure 2.13: A comparison of the RMS tracking error versus the amount of data
for training the DNNs with (blue) and without (red) the difference learning scheme.
The horizontal axis shows the proportion of randomly selected data from Training
Dataset 2 described in Sec. 2.6.4; the vertical axis shows the RMS error on Traj. 24
with the DNN-enhanced system (see Fig. 2.5). The plot shows that the DNN trained
with the difference learning scheme is able to reach the best observed performance
of the DNN trained without the difference learning scheme (indicated by the grey
dotted line) with approximately 15 times less training data. Note that the RMS
tracking error corresponding to the baseline system is shown as a grey dashed line for
reference.

DNN without the difference learning scheme (grey dotted line), with approximately

15 times less data.

2.7. CONCLUSIONS 49

2.7 Conclusions

In this chapter, we present theoretical and experimental studies of a DNN-based

approach for enhancing the tracking performance of black-box control systems for

arbitrary feasible trajectories. We considered a MIMO, possibly nonlinear, system

as our starting point. In order to achieve an identity map from the desired output

to the actual output, we established that the DNN module in the proposed control

architecture should approximate the output equation of the inverse dynamics of the

baseline system. Due to the association with system inversion, the effectiveness of the

proposed approach relies on two necessary conditions that the baseline system has

(i) a well-defined vector relative degree and (ii) stable zero dynamics. Second, for

the systems satisfying these two necessary conditions, we identified the necessary and

sufficient inputs of the DNN module. Third, we verified the insights by repeating the

quadrotor experiments in [48]. In particular, we showed that with the proposed DNN

input selection, the DNN input dimension is reduced by two thirds while achieving

similar or better performance on the 30 hand-drawn trajectories in [48]. Moreover, in

contrast to the quadrotor baseline controller, for which the tracking error increased

with the trajectory speed, the tracking errors of the DNN-enhanced systems remained

small as the trajectory became more aggressive. By using a richer training dataset,

we also showed that the proposed DNN module reduced RMS error by approximately

62% on the average of the 30 testing hand-drawn trajectories. Fourth, using an

argument similar to the small gain theorem, we proved that, for systems with stable

zero dynamics, the overall DNN-enhanced control system is input-to-state stable if

the DNN modeling error is sufficiently small. Fifth, we explored via both theory

and experiments the effectiveness of the difference learning scheme for improving the

efficiency of the training of the DNNs in the proposed approach. In particular, we

derived a necessary condition for the effectiveness of the difference learning approach,

and verified this condition via experiments. For the quadrotor impromptu tracking

experiments, we showed that the DNN trained with the difference learning scheme is

able to achieve comparable tracking performance of a DNN module trained without

the difference learning scheme with approximately 15 times less data.

Chapter 3

Learning an Approximate Inverse

to Enhance Non-minimum Phase

Systems

3.1 Introduction

In the previous chapter, we introduced an add-on inverse dynamics learning approach

to enhance the tracking performance of robot systems. One necessary condition for

the approach to be effective is that the baseline system needs to be minimum phase.

For many practical problems ranging from flexible robot arm end-effector tracking [77]

to car backward driving [61] and to aircraft control [78], the input-output dynamics

are non-minimum phase (i.e., the inverse dynamics are inherently unstable). The non-

minimum phase nature poses challenges in classical control design [61] and prohibits

the direct application of inversion-based approaches.

In this chapter, we again consider the task of impromptu tracking [48] and extend

the inverse dynamics learning approach to non-minimum phase systems. In partic-

ular, informed by control theory, we (1) propose an approach for learning a stable

approximate inverse model for a non-minimum phase system, (2) prove stability of

the learning-enhanced architecture, and (3) provide theoretical insights on the inverse

approximation utilized by the learning module to achieve performance enhancement,

and (4) experimentally demonstrate the efficacy of the proposed approach for non-

linear systems on (i) an inverted pendulum on a cart system and (ii) a modified

non-minimum phase quadrotor system. For the quadrotor experiments, the general-

izability of the learned inverse is verified using arbitrary, hand-drawn trajectories.

50

3.2. RELATED WORK 51

Controller PlantDNN

Black-box Baseline System

Learned
System Inverse

Command

-1

Testing Phase

Training Phase (Offline)

Storage Storage

Desired
Output Reference

Actual
Output

-
DNN

-1

Figure 3.1: An illustration of the proposed DNN-enhanced control architecture for
output trajectory tracking. A stable baseline control system is treated as a black box
and a DNN module is pre-cascaded to the baseline system to adjust reference signals
to improve the tracking performance.

3.2 Related Work

In the literature, various model-based inversion approaches have been proposed to re-

solve the instability issue associated with the system inverse of non-minimum phase

systems. These approaches are based on (i) pre-actuation [27] or (ii) inverse approxi-

mation [79, 80]. In the pre-actuation approach, first proposed in [27], a bounded input

is ensured by pre-loading the system state to a desired initial state designed for the

particular desired trajectory. Though exact tracking can be achieved with bounded

input signals, the solutions are trajectory-specific and require significant setup time

in order to reach the desired initial condition [81]. On the other hand, in the inverse

approximation approaches, stability of the inverse is ensured by replacing the unsta-

ble components of the inverse dynamics with a stable approximation that is capable

of achieving precise tracking (see [80, 79] and the references therein). As compared

with the pre-actuation approaches, the approximate inversion approaches are more

robust against modeling errors and consequent instability issues. Moreover, since the

inversion is system-specific, the approximate inversion approaches can be more easily

generalized to impromptu tracking tasks. However, due to the model-based nature

of both approaches, the effectiveness depends on sufficiently accurate system mod-

els. This limitation motivates the investigation of learning techniques, which leverage

data to improve the performance of model-based approaches.

For minimum phase systems, different inverse dynamics learning approaches have

been studied. In the previous chapter, a DNN-based control architecture (Fig. 2.1)

52 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

was proposed to enhance the tracking performance of minimum phase black-box sys-

tems (i.e., systems whose dynamical models are not available or not sufficiently ac-

curate). With experiments on quadrotors, it was shown that the proposed approach

led to an average of 62% tracking error reduction over 30 arbitrary, hand-drawn

trajectories, as compared to the baseline controller. In addition to our previous

work, the potential of utilizing inverse learning for high-accuracy tracking has been

demonstrated using different robotic platforms and learning techniques (e.g., Gaus-

sian processes (GPs) and locally weighted projection regression (LWPR)), see for

instance [82, 83, 84]. Nevertheless, the applicability of these inversion-based learning

approaches to non-minimum phase systems has not been studied, and systematically

extending inverse dynamics learning schemes to non-minimum phase systems is still

an open problem.

Previously, for non-minimum phase systems, a DNN-based adaptive feedback error

learning approach has been proposed to learn an inverse of the open-loop plant for

enhancing tracking [85, 86]. In this approach, the DNN training requires the plant

or a good model of the plant in place, which may not always be desired in the initial

training phase or available in practice. Moreover, similar to the adaptive inverse

learning approaches discussed in Chapter 2, this approach is more susceptible to

instability issues, especially when the DNN is not well-initialized [55].

In this chapter, we present a learning-based approach that constructs an ap-

proximate inverse of a non-minimum phase, feedback-stabilized system based only

on input-output data. We show the connection between the proposed learning ap-

proach and a common model-based approximate inversion approach for linear sys-

tems [79, 80]. The proposed approach shares the same core concept as the model-

based approach; yet, without requiring a detailed model, the proposed approach leads

to better performance and is applicable to nonlinear systems.

3.3 Problem Formulation

We aim to provide an inversion-based learning approach for enhancing the track-

ing performance of non-minimum phase systems in impromptu tracking tasks. The

proposed approach should satisfy the following objectives:

(O1) the overall system, including the learning module, is input-to-output stable [87];

(O2) the learning module relies only on the input-output data rather than a system

model;

3.3. PROBLEM FORMULATION 53

(O3) with the learning module, the root-mean-square (RMS) tracking error is reduced

for impromptu tracking tasks, compared to the baseline system.

We consider the inversion-based learning architecture shown in Fig. 3.1, which

consists of a baseline system and a pre-cascaded, learned system inverse module

enhancing the tracking performance via modifying the reference signal u. In the

training phase, the input-output data, u and y, generated from the baseline system is

stored and used to construct a training dataset that typically has y and u at selected

time steps as the labeled inputs and u at the current time step as the labeled output.

When later using the trained module in the testing phase, the desired trajectory yd

is given to the learned inverse model as input (in place of y) to compute a reference

u that is sent to the baseline system.

The considered architecture is different from typical inversion-based feedforward

architectures where the inverse of the open-loop plant P is used and the output signal

from the inverse is directly applied to the plant [82, 86]. By learning the inverse of a

stabilized baseline system, the proposed architecture decouples the performance en-

hancement problem from the plant stabilization problem, which simplifies the design,

analysis, and practical implementation.

We first motivate our proposed approach by analyzing linear time-invariant (LTI),

single-input-single-output (SISO) systems and then extend our discussion to nonlinear

SISO systems. For linear systems, we represent the baseline feedback control system

by the transfer function

H(z) =
Y (z)

U(z)
=
N(z)

D(z)
=

1 +
∑n−r

i=1 αiz
i∑n

i=0 βiz
i

, (3.1)

where U(z) and Y (z) are the z-transforms of the input and output of the system,

N(z) and D(z) are the numerator and denominator polynomials, n is the order of

the system, r is the relative degree of the system, and αi, βi ∈ R are scalar constants.

For nonlinear systems, we consider the control affine nonlinear system:

x(k + 1) = f(x(k)) + g(x(k)) u(k),

y(k) = h(x(k)),
(3.2)

where k ∈ Z≥0 is the discrete time index, x ∈ Rn is the state, u ∈ R is the input,

y ∈ R is the output, and f(·), g(·), h(·) are nonlinear smooth functions (i.e., functions

for which all orders of differentiation exist and are continuous).

In deriving a solution for our problem, we assume:

54 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

(A1) the underlying plant is stabilizable and the baseline system is stable;

(A2) at any time instant k, the current and future values of the desired trajectory

are known up to time k + n, where n is the order of the baseline system;

(A3) the learned inverse dynamics module are feedforward neural networks (FNNs)

with (A3a) finite weights and biases and (A3b) continuous activation functions

σ(·).

Assumptions (A1) through (A3) are not restrictive in practice. For (A1), well-

developed control methods, including model-free controllers (e.g., PID controllers),

can be used to stabilize a system even in the absence of a dynamical model. It should

be noted that, although it is possible to design a stabilizing controller using standard

control techniques, achieving high-accuracy tracking on arbitrary feasible trajectories

remains to be challenging. Our goal is to employ an inversion-based approach to

enhance the impromptu tracking performance of the baseline control system. For

(A2), a preview of n time steps of the desired trajectory is typically available, and

this assumption does not prevent combinations with on-line trajectory generation

and adaptation algorithms. Moreover, for (A3), even though we use FNNs in this

chapter, the proposed approach can be potentially realized with other nonlinear re-

gression techniques (e.g., GPs and LWPR). Assumption A3a can always be satisfied

with standard DNN training algorithms, and assumption A3b holds for all common

DNN activation functions (e.g., rectified linear units (ReLU), tanh, and sigmoid).

3.4 Non-minimum Phase System Inverse Learning

For non-minimum phase systems, one approach to resolve the instability issue in

inversion-based approaches is to utilize stable inverse approximations. In this section,

we adapt this concept to unknown, possibly nonlinear baseline systems using a DNN-

based control architecture (Fig. 3.1).

Given the control architecture in Fig. 3.1, in Chapter 2, it is shown that for a

minimum phase system with a well-defined relative degree r, exact tracking (i.e.,

y(k + r) = yd(k + r)) can be achieved by training the DNN to model the exact

inverse dynamics of the baseline system. As shown in Chapter 2, to learn the exact

inverse of system (3.2), the proper selection of inputs I and outputs O of the DNN

module are I = {x(k), yd(k + r)} and O = {u(k)}. For LTI systems, based on the

3.4. NON-MINIMUM PHASE SYSTEM INVERSE LEARNING 55

representation (3.1), the inputs of the DNN module can be selected as

I = {yd(k−n+r : k+r), u(k−n+r : k−1)}, (3.3)

where consecutive time indices are abbreviated with ‘:’. In practice, when applying

these results to design the DNN module, only basic system properties (i.e., n and r)

are needed. A system’s order n can be determined from basic physics laws, and the

relative degree r can be determined from simple step-response experiments. Although

the exact inverse learning approach can be conveniently implemented in practice [48],

its effectiveness is restricted to minimum phase systems.

3.4.1 The Proposed Approach: DNN Input Modification

We propose a learning approach that achieves stability (O1) and performance en-

hancement (O3) through modifying the DNN input selection. We first consider the

linear baseline system (3.1), for which the exact inverse is

H−1(z) =
U(z)

Yd(z)
=
D(z)

N(z)
=

∑n
i=0 βiz

i

1 +
∑n−r

i=1 αiz
i
, (3.4)

where Yd(z) is the z-transform of the desired output yd(k). For non-minimum phase

systems, at least one root of the denominator N(z) is outside of the unit circle, which

is the source of instability that prevents the direct application of the inverse learning

scheme in (3.3). If the input of the DNN module is selected such that the unstable

dynamics associated with N(z) cannot be learned, then the instability issues would

not arise. Eqn. (3.4) can be written as H−1(z) = U(z)
Yd(z)

=
∑n

i=0 βiz
i−n

z−n+
∑n−r

i=1 αizi−n ; by applying

the inverse z-transform (denoted by Z−1{·}) to H−1(z), we have

n∑
i=0

βiZ−1{zi−nYd(z)} = Z−1{z−nU(z)}+
n−r∑
i=1

αiZ−1{zi−nU(z)} (3.5)

⇔
n∑
i=0

βiyd(k + i− n) = u(k − n) +
n−r∑
i=1

αiu(k + i− n). (3.6)

By shifting the signals in (3.6) forward by n, we can then relate the input and output

of the inverse system as

u(k) =
n∑
i=0

βiyd(k + i)−
n−r∑
i=1

αiu(k + i), (3.7)

56 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

or

u(k) = F (yd(k : k+n)︸ ︷︷ ︸
from D(z)

, u(k+1 : k+n−r)︸ ︷︷ ︸
from N(z)

), (3.8)

where F (·) denotes a generic multi-variable function. From (3.8), it can be seen that

the unstable dynamics associated with N(z) are reflected in the dependency of u(k)

on the sequence of reference signals u(k+1 : k+n−r).

Proposed Input-Output Selection. Based on (3.8), we propose the following

DNN input-output selection:

I = {yd(k : k+n)} and O = {u(k)}, (3.9)

where the sequence of u is removed from the input I to prevent the DNN module

from learning the unstable dynamics associated with N(z).

Note that, while the proposed input-output selection is derived based on linear

systems, when applying the proposed approach to nonlinear systems, the DNN module

learns an approximate inverse of the nonlinear baseline system rather than a linearized

baseline system. This is due to the fact that the DNN module is directly trained with

the input-output data generated by the nonlinear baseline system.

3.4.2 Stability of the Proposed Approach

The proposed approach was derived from (3.1) to guarantee stability for the LTI sys-

tems. In this subsection, we prove stability for nonlinear systems using assumptions

(A1) and (A3).

Theorem 3.4.1 (Stability of the Approximate Inverse Learning Approach). Con-

sider the inversion-based learning control architecture in Fig. 3.1 and the nonlinear

system (3.2). Under assumptions (A1) and (A3), the learning module input-output

selection in (3.9) ensures that the overall control system (from yd to y) is input-to-

output stable.

Proof. From (3.9), the learning module approximates a mapping from I =

{yd(k : k+n)} to O = {u(k)}. For a typical L-layer DNN with n + 1 inputs and

1 output, by denoting ζ0(k) = [yd(k) yd(k + 1) · · · yd(k + n)]ᵀ as the network in-

put at time k, the output of a neuron i in a hidden layer l, denoted by ζl,i(k), can

be expressed as ζl,i(k) = σ
(∑Nl−1

j=1 Wl,ijζl−1,j(k) + bl,i

)
, where σ(·) is the activation

function, l ∈ N, 1 ≤ l ≤ L − 1, is the layer index, Nl ∈ N is the number of neurons

3.4. NON-MINIMUM PHASE SYSTEM INVERSE LEARNING 57

in layer l, ζl ∈ RNl is the output of the layer l, Wl ∈ RNl×Nl−1 and bl ∈ RNl are the

weights and bias associated with layer l, ζl,i and ζl−1,j are the i-th element of the

vector ζl and the j-th element of the vector ζl−1, Wl,ij is the i-th row and j-th column

element of the matrix Wl, and bl,i is the i-th element of the vector bl. The output

of the network is F̃ (ζ0(k)) =
∑NL−1

j=1 WL,1jζL−1,j(k) + bL,1. By assumptions A3a and

A3b, the network parameters w and b are bounded, and σ is continuous; hence, the

output of each neuron i in layer l (i.e., ζl,i) is continuous in ζ0. Moreover, since F̃ is a

composition of ζl,i, F̃ is also continuous in ζ0. Since every continuous function from

a compact space into a metric space is bounded, the network output u(k) is bounded

for bounded input ζ0(k). Furthermore, by assumption (A1), the baseline system is

input-to-output stable; thus, for any bounded desired trajectory yd, the output u(k) of

the DNN is bounded, and the overall system from yd to y is input-to-output stable. �

Note that the input-to-output stability of the DNN module and the overall DNN-

enhanced system rely on the fact that the proposed DNN module is a continuous,

static mapping. This stability result holds for both linear and nonlinear systems and

is independent of the DNN regression errors.

3.4.3 Insights on Performance Enhancement

Given that the stability (O1) is achieved through the input selection of the learning

module in (3.9), in this subsection we address the performance enhancement objec-

tive (O3).

Remark 3.4.1 (Approximate Inverse Learning). For system (3.1), given a suffi-

ciently high sampling rate, the input selection in (3.9) enables the DNN to learn an

approximate inverse, where the sequence of reference signals in the input of the exact

inverse map is approximated by u(k).

In order to clarify the insight above, we first present a toy example. Consider a

linear function with input ξ = [ξ1 ξ2 ... ξm]ᵀ ∈ Rm and output υ ∈ R: υ = F1(ξ). If

a particular input ξp is correlated to the output υ by the linear function υ = F2(ξp)

and ∂F1

∂ξp
6= dF2

dξp
, then υ can be re-expressed as a linear function of the remaining

components of the vector ξ: υ = F3(ξ̃), where ξ̃ := [ξ1 ... ξp−1 ξp+1 ... ξm]ᵀ. This

implies that a regression model for the output υ can be found with either ξ or ξ̃ as

the input. This simple discussion can be generalized to the case when the removal

of the dimension ξp does not lead to a one-to-many map from ξ̃ to υ; a regression

model can be constructed in a lower-dimensional input space to uniquely determine

the output υ for a given ξ̃. An illustration is shown in Fig. 3.2. When a component of

58 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

Learned
Mapping

Linear
Correlation

O
u

tp
u

t

Input Input

Figure 3.2: Illustration of data projection in the approximate inverse learning.

the input vector is related to the output by the function F2, the data points generated

by F1 are restricted to the intersection of the manifolds defined by F1 and F2. When

ξp is removed from the input of the dataset, the data points are projected onto a

lower-dimensional space that is orthogonal to ξp.

For training, since an arbitrary smooth trajectory can be expressed as a superpo-

sition of sinusoidal functions, without loss of generality, we consider in our discussion

below a single sinusoidal training trajectory of the form u(t) = A sin(2π
T
t)+ b, where t

denotes continuous time. It can be shown using Taylor series expansion of u(t) that

at time step k, future references u(k + p) for p = 1, ..., n − r can be related to the

current reference u(k) by

u(k + p) = u(k) +
∞∑
i=1

(
2πp∆t

T

)i
ci(k), (3.10)

where ∆t denotes the sampling time and |ci(k)| ≤ A
i!

. Given that p is typically a small

positive number bounded by n−r, if ∆t is sufficiently small as compared to the period

of the trajectory T , then from (3.10), at a particular time step k, the future reference

u(k + p) and u(k) are approximately correlated by the identity function. Given

this approximate correlation and by the result above, though dependent reference

components are removed from the DNN input based on the selection in (3.9), the

DNN can still learn a regression model to output a reference u that best matches

that in the training dataset. Hence, the DNN acts as an approximate inverse from

output y to input u that reduces the error between yd and y. From (3.10), the error

involved in consecutive reference signal approximations and the inherent regression

3.4. NON-MINIMUM PHASE SYSTEM INVERSE LEARNING 59

error in the learned inverse model is smaller for smaller ∆t (i.e., higher sampling

frequency).

For nonlinear systems, to achieve exact tracking, the learning module should model

the output equation of the inverse dynamics, and u(k) should be a nonlinear function

of x(k) and yd(k + r) (see Sec. 3.4); however, for non-minimum phase systems, the

internal instability of x(k) can cause numerical issues. One trivial solution is to

remove the state x(k) from the DNN input and use I = {yd(k + r)}. Instead, we

suggest to use the same proposed input selection as in (3.9). A rough conjecture for

this selection is as follows. Since smooth nonlinear systems can be approximated by

piecewise affine/linear systems with arbitrary accuracy [71], one can always represent

the considered, smooth nonlinear system as an aggregation of local, n-dimensional,

affine/linear models defined on local regions of a cover/partition of the nonlinear

system state space. Since all models have order n, by following the derivation in

Sec. 3.4.1 for each local model, one obtains the same input selection as in (3.9) for

each local model. Thus, it is reasonable to select the inputs for the DNN as in (3.9)

even for nonlinear systems. The effectiveness of the proposed input selection for

nonlinear systems is validated with simulations and experiments in Sec. 4.6 and 3.6,

respectively.

3.4.4 Connection to the ZOS Approach

In this subsection, we show a connection between the proposed approach and a model-

based approximate inverse approach for linear systems, the zero-order series (ZOS)

approach [79]. In the ZOS approach, the transfer function polynomials associated with

the unstable zeros are approximated by zero-order Taylor series [79]. In particular,

by re-expressing (3.1) as H(z) = Ns(z)Nu(z)
D(z)

, the ZOS approximate inverse is

H̃−1ZOS(z) =
D(z)

Nu(z)|z=1Ns(z)
, (3.11)

where Ns(z) and Nu(z) denote the numerator polynomials with stable and unstable

zeros, respectively.

Remark 3.4.2 (Connection to the ZOS Approximate Inverse). For linear systems,

the approximation of the sequence of reference signals with the current reference u(k)

is equivalent to approximating the numerator of the transfer function N(z) in (3.1)

with N(z)|z=1. With the input selection in (3.9), the proposed learning approach

achieves stability (O1) and performance enhancement (O3) in a similar manner as

60 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

the model-based ZOS approach in (3.11).

The time-domain representation of the exact inverse in (3.4) is shown in (3.7).

When u(k+i) for i=1, ..., n−r are approximated by u(k) as in the proposed approach,

we obtain
∑n

i=0 βiy(k + i) ≈
(
1 +

∑n−r
i=1 αi

)
u(k), or H−1(z) ≈

∑n
i=0 βiz

i

1+
∑n−r

i=1 αi
= D(z)

N(z)|z=1

in the z-domain. By comparing the latter expression with the ZOS approximation

in (3.11), it can be seen that they both achieve stability by approximating unstable

zero dynamics at z = 1, and compensating for the delays introduced by the dynamics

associated with the poles (D(z)) to improve tracking performance.

Note that the generalizability of the DNN depends on the invariance of the phase

and magnitude errors of the transfer function Y (z)
Yd(z)

= N(z)
N(z)|z=1

with respect to the

frequency of the desired trajectory; it can be shown that the generalizability is better

if the zeros (the roots of N(z)) are further away from z = 1. Moreover, similar to the

ZOS approach [80], we expect that the proposed learning approach is more effective

for enhancing the tracking performance of desired trajectories with frequencies less

than the frequency of the zeros.

3.5 Simulation Results

We use an inverted pendulum on a cart system (pendulum-cart system) to illustrate

the efficacy of the proposed approach for nonlinear non-minimum phase systems.

3.5.1 Simulation Setup

The pendulum-cart system has two degrees of freedom – the cart linear position η

and the pendulum angular position θ. By applying Lagrange’s equations, a dynamics

model of the pendulum-cart system can be obtained [88]:

η̈ =
q +mg sin θ cos θ −mlθ̇2 sin θ

M +m sin2 θ

θ̈ =
q cos θ + (M +m)g sin θ −mlθ̇2 sin θ cos θ

l
(
M +m sin2 θ

) ,

(3.12)

where M and m are the masses of the cart and the pendulum, respectively, l is the

effective length of the pendulum relative to the pivot point, and q is the force applied

to the cart. By defining the state of the system as x = [η η̇ θ θ̇]ᵀ, its input as the force

q, and its output as the full state y = x, the nonlinear state-space representation of

3.5. SIMULATION RESULTS 61

the pendulum-cart system can be written in the control affine form:

ẋ = f1(x2, x3, x4) + g1(x3) q, y = x, (3.13)

where x2 = η̇, x3 = θ, and x4 = θ̇. The control objective is to compute a control

input q such that the cart tracks a desired trajectory ηd(t) while the pendulum is

balanced at the upright position. The desired output is yd(t) = [ηd(t) η̇d(t) 0 0]ᵀ.

Through linearizing the system (3.13) at η = ηd, η̇ = 0, θ = 0, θ̇ = 0, and q =

0, the pole placement technique can be used to find a stabilizing controller q(t) =

K1(u(t)−y(t)), where u is the reference of the baseline system and for our simulations

K1 = [−0.8678 −1.808 25.46 4.140].

A learning module, pre-cascaded to the baseline system as in Fig. 3.1, is designed

based on (3.9) to enhance the performance of the cart position tracking. Given

the desired trajectory ηd (a component of yd), at a time instance k, the learning

module computes an adjusted reference signal ηr (a component of u) to be sent to

the baseline system. The η̇r component in u is generated from the ηr trajectory.

A DNN with 2 hidden layers of 5 hyperbolic tangent neurons is used for learning

the approximate inverse of the baseline system. Assuming that the baseline system

succeeds to stabilize the pendulum at the upright position, then from (3.12), the

dynamics associated with η may be approximated by a second-order system; by (3.9),

the input and output of the learning module are selected to be I = {ηd(k : k+2)} and

O = {ηr(k)}. The learning module is executed at sampling intervals of 0.015 s.

The module is trained on 30 sinusoidal trajectories with different combinations of

amplitudes {0.5, 1.0, 1.5, 2.0, 2.5, 3.0} m and periods {5, 10, 15, 20, 25} s. The training

dataset consists of pairs of (I = {η(k : k+2)},O = {ηr(k)}) randomly sampled from

the 30 training trajectories with equal proportions. Validation of the DNN model

is performed on 30% of the training dataset; additional validation of the learning

module is done by running the overall system on untrained trajectories.

3.5.2 Results

The tracking performance of the baseline system and the learning-enhanced system

are compared in Fig. 3.3 for test sinusoidal trajectories with frequencies different

from those used in training. From Fig. 3.3, although the baseline system is capable

of stabilizing the pendulum-cart system, the tracking error increases with decreasing

periods of desired trajectories. In contrast, when the proposed learning module is

added to the baseline system, the tracking error is approximately maintained at a

62 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

6 8 10 12 14 16 18 20 22 24
0.0

0.5

1.0

1.5 Baseline with Proposed Learning

Figure 3.3: The RMS tracking error of the baseline and the learning-enhanced sys-
tem for desired trajectories of the form ηd(t) = 5

2
sin
(
2π
T
t
)
, where the periods T are

different from those used for training. The RMS error reduction achieved by the
learning module ranges from 47% to 87%. A video for T = 12 s can be found at:
http://tiny.cc/fq0mny.

0 2 4

-50

 0

 50 Desired Improper Learning

0 2 4

-10

0

10 Desired Improper Learning

Figure 3.4: Illustration of the adverse effect caused by the inclusion of an additional
reference component in the input I of the learning module.

smaller constant value over the range of trajectory periods covered by the training

dataset, which shows the generalizing capabilities of the learning approach.

Fig. 3.4 shows the adverse impact when a single past reference is included in the

proposed input selection of the learning module, i.e., when I = {ηd(k : k+2), u(k−1)}.
It can be seen that when the additional information is included, the pendulum-cart

system quickly becomes unstable. Thus, for non-minimum phase systems, the in-

put selection of the learning module is essential; the inclusion of unnecessary inputs

can prevent not only the learning approach but also the baseline system from being

functional. From this example, it is interesting to see that, for non-minimum phase

systems, the DNN trained with less inputs leads to a better performance. In contrast

to typical DNN applications (e.g., image classification), for control applications, the

training objective (e.g., minimizing regression error) and performance objective (e.g.,

minimizing tracking error) may not coincide. Consequently, DNN training algorithms

may not phase out unnecessary input dimensions to achieve a good performance.

3.6 Experimental Results

The effectiveness of the proposed approach is further verified using pendulum-cart

and quadrotor experiments. Note that, in the experiments, the criterion we use

http://tiny.cc/fq0mny

3.6. EXPERIMENTAL RESULTS 63

for evaluating tracking performance is the RMS tracking error, which characterizes

tracking performance over entire trajectories.

3.6.1 Pendulum-Cart Experiments

3.6.1.1 Experiment Setup

The setup is similar to that of the simulation (Sec. 3.5.1), except that the input force

q is replaced by the input voltage v to the cart motor. By using a simple voltage-

to-force model q(t) = −7.74η̇(t) + 1.73v(t) [89], system (3.13) can be re-expressed

as

ẋ = f2(x2, x3, x4) + g2(x3) v, y = x, (3.14)

where η(t) and θ(t) are measured, and x(t) is estimated with a full-state observer. A

controller v(t) = K2(u(t) − y(t)) with K2 = [−105.6 −55.04 130.7 23.67] is run at

1 kHz.

We compare the proposed learning approach with the baseline system and the

model-based ZOS approach. In the experiments, the learning module is run at 70 Hz;

the design and training procedure for the inverse-learning module are similar to that

of the simulations (see Sec. 4.6). The training dataset is constructed from 18 sinu-

soidal trajectories with combinations of amplitudes {0.04, 0.06, 0.08} m and periods

{5, 6, 7, 8, 9, 10} s. The ZOS approach is implemented based on the linearized state-

space model of system (3.14). From the linearized system, a discrete-time transfer

function from the reference ηr to the output η can be determined. By applying (3.11),

the ZOS approximate inverse is obtained: H̃−1ZOS(z) = z4−3.5217z3+4.6504z2−2.7290z+0.6005
0.00137z2−0.0001066z−0.001066 .

For the experimental comparison, the ZOS approximate inverse H̃−1ZOS(z) replaces the

learning module in Fig. 3.1.

3.6.1.2 Results

Figure 3.5 compares the tracking performance of the baseline, the ZOS, and the pro-

posed learning-based systems on a test trajectory ηd(t) = 117
2000

sin(2π
5
t) + 13

2000
sin(4π

11
t),

which was not included in the training phase. The stability objective is achieved by

all three systems, and the pendulum position is kept approximately at the upright

position. From the cart position η(t) plot, the proposed DNN (blue) effectively com-

pensates for the phase and magnitude errors in the baseline system response (gray).

For this test trajectory, the learning module reduces the RMS tracking error by 60%.

In contrast, by comparing the η(t) of the ZOS approach (green) with the baseline

64 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

-0.1

0

0.1

 (
m

)

RMS Errors: Baseline 0.014 m, ZOS 0.026 m, Proposed 0.0054 m

0 5 10 15 20 25 30 35 40 45

Time (sec)

-0.2

-0.1

 0

 0.1

 (
ra

d
)

Desired Baseline ZOS Proposed

Figure 3.5: The cart position η and the pendulum angle θ of the baseline, the ZOS,
and the proposed learning-based systems on a test trajectory ηd(t) = 117

2000
sin(2π

5
t) +

13
2000

sin(4π
11
t).

Figure 3.6: Illustrations of 10 hand-drawn test trajectories used for evaluating the
tracking performance of the quadrotor controllers.

response (gray), the addition of the approximate inversion led to worse tracking per-

formance. Though the linearized state-space model is sufficiently accurate for deriving

a baseline controller that stabilizes the pendulum-cart system, the application of the

model-based system inversion approach requires a much more detailed and accurate

system model. Thus, in comparison with the ZOS approach, the proposed DNN-based

learning approach (blue) is capable of achieving a better performance without relying

on a detailed dynamic model of the baseline system.

3.6.2 Quadrotor Experiments

The efficacy of the proposed approach on higher degree-of-freedom systems is demon-

strated using quadrotor vehicles. In this set of experiments, the objective is to enhance

a baseline controller of a quadrotor for tracking arbitrary, hand-drawn trajectories

(Fig. 3.6) in one shot.

3.6.2.1 Experiment Setup

The state vector of the quadrotor system consists of the positions p = (x, y, z), veloc-

ities v = (ẋ, ẏ, ż), roll-pitch-yaw Euler angles θ = (φ, θ, ψ), and rotational velocities

ω = (p, q, r). The control objective is to control the position of the quadrotor to track

3.6. EXPERIMENTAL RESULTS 65

0

1

z (
m

)

DN
N

Ex
ac

t I
nv

er
se

Desired Actual (Baseline) Modified Ref. Actual (w/ Modified Ref.)

0

1

z (
m

)

ZO
S

Ap
pr

ox
. I

nv
er

se

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (sec)

0

1
z (

m
)

RMS Error (Baseline) = 0.127 m
RMS Error (Exact Inverse DNN) = 0.160 m (-25% error reduction as compared to baseline)

RMS Error (Baseline) = 0.127 m
RMS Error (ZOS) = 0.125 m (2% error reduction as compared to baseline)

RMS Error (Baseline) = 0.127 m
RMS Error (Proposed DNN) = 0.048 m (62% error reduction as compared to baseline)Pr

op
os

ed
 D

NN
Ap

pr
ox

. I
nv

er
se

Figure 3.7: Comparison of the DNN exact inverse approach (Chapter 2), the ZOS ap-
proximate inverse approach, and the proposed DNN approximate inverse approach for
enhancing the tracking performance of the modified non-minimum phase quadrotor
system. The desired z-position trajectory is from the first hand-drawn test trajectory
shown in Fig. 3.6 (left, top).

a desired trajectory pd(t). The baseline tracking controller is a standard nonlinear

controller composed of a nonlinear transformation and PD control running at 70 Hz.

For the purpose of studying non-minimum phase systems, non-minimum phase zeros

at 1.2 are introduced to the baseline system by modifying the baseline z position and

velocity references (zr and żr). Note that, in this chapter, we purposely introduce

a non-minimum phase zero to the baseline system for evaluating our proposed ap-

proach; in practice, this non-minimum phase nature can occur in apparent minimum

phase robotic systems when the sampling rate is high [90].

In the experiments, we examine three inversion-based approaches that adapt the

reference signals of the baseline controller pr and vr to reduce the tracking error

between the desired position pd and the actual position p:

(M1) DNN exact inverse learning: the learning-based approach effective for minimum

phase systems;

(M2) ZOS approximate inverse: a model-based approach for non-minimum phase

systems;

(M3) DNN approximate inverse learning: the proposed learning-based approach with

input-output selection based on (3.9).

The inverse blocks receive the desired position pd and desired velocity vd as inputs,

66 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

and compute the adjusted position reference pr and velocity reference vr for the

baseline system. For comparison purposes, the DNN training and architecture are

similar to that outlined in Sec. 2.6.1. In particular, the DNNs are fully-connected

feedforward networks with 4 hidden layers of 128 ReLUs. During the training phase,

the baseline system is used to track a 400-second, 3-dimensional sinusoidal trajectory,

and the input-output data of the baseline system is collected at 7 Hz. The training

dataset of the DNN consists of (I,O) pairs randomly sampled from the input-output

data of the baseline system. Overall, 90% of the dataset is used for training, and the

remainder of the dataset is used for validation. For evaluating the effectiveness and

generalizability of the inversion-based approaches, test trajectories generated from

arbitrary hand drawings are utilized (Fig. 3.6).

3.6.2.2 Results

We first examine the three inversion-based approaches for enhancing the tracking

performance of the modified non-minimum phase quadrotor baseline system, where

non-minimum phase zeros are introduced in the dynamics associated with the z-

direction. The implementation of (M1) follows from that in Sec. 2.6.1. The imple-

mentation of (M2) is based on the approximation of the dynamics of the baseline

system with decoupled second-order linear systems; by applying (3.11), the ZOS

approximate inverse is found to be H−1ZOS(z) = z3−1.713z2+0.7493z
0.2692z−0.2331 , and is applied to

adjust the position and velocity references zr and żr. In the implementation of

(M3), we need to estimate the system order n. We assume that the quadrotor

has decoupled double-integrator dynamics in the x, y, and z directions. By fur-

ther accounting for the experimentally determined time delays in each direction

and applying (3.9), the inputs and outputs of the DNN module are selected to be

I = {xd(k+1 : k+7)− xd(k), yd(k+1 : k+7)− yd(k), zd(k+1 : k+5)− zd(k), ẋd(k+1 :

k+6) − ẋd(k), ẏd(k+1 : k+6) − ẏd(k), żd(k+1 : k+4) − żd(k)} and O = {xr(k) −
xd(k), yr(k)− yd(k), zr(k)− zd(k), ẋr(k)− ẋd(k), ẏr(k)− ẏd(k), żr(k)− żd(k)}. Follow-

ing the discussion in Chapter 2, in the implementations of (M1) and (M3), we utilized

a difference learning scheme (i.e., training with relative positions and velocities) to

improve training efficiency.

Figure 3.7 shows a comparison of the three inversion-based approaches for a test

trajectory in the z-direction, zd(t), from the first hand drawing shown in Fig. 3.6.

From the top panel, as expected, due to the inherent instability of the inverse, the

approach (M1) does not lead to an improved tracking performance. Instead, it intro-

duces undesired oscillations in the system response and leads to worse performance as

3.6. EXPERIMENTAL RESULTS 67

-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5
x (m)

0.50

0.75

1.00

1.25

1.50

z (
m

)

Desired Actual (Baseline) Actual (Proposed DNN)

Figure 3.8: Example of the performance enhancement achieved by the proposed DNN
approximate inverse approach for the modified non-minimum phase quadrotor system.
Here, the proposed DNN leads to a 67% error reduction.

compared with the baseline controller. We next consider (M2) shown in the middle

panel. From the computed reference zr (light blue dotted line), it can be seen that the

model-based system approximate inversion tends to compensate for the delay in the

system response; however, with the linearized model, the approximate inverse H−1ZOS

cannot effectively reduce the magnitude error of the system response. In contrast,

for the proposed approach (M3), shown in the bottom panel, the reference computed

by the DNN module efficaciously compensates for the tracking errors of the baseline

response. With (M3), the RMS tracking error in the z-direction is reduced by approx-

imately 62%, while the percentage reductions for (M1) and (M2) are approximately

-25% and 2%, respectively.

Figure 3.8 shows the tracking performance of the proposed approach (M3) on

the hand-drawn test trajectory corresponding to that shown in Fig. 3.7. On this

hand-drawn test trajectory, the proposed approach reduces the 3-dimensional RMS

tracking error by 67%. The generalizability of the proposed approach is tested on

10 hand-drawn trajectories (Fig. 3.6), which are not seen during the training phase.

Fig. 3.9 shows a summary of the 3-dimensional RMS errors of the non-minimum phase

baseline quadrotor tracking system (dark blue bars) and the system enhanced by the

proposed DNN approximate inverse learning (light blue bars). On average, 60% error

reduction is achieved by the proposed DNN module. In addition, the dark and light

yellow bars in Fig. 3.9 show that the proposed DNN also effectively enhances the

performance of the original minimum phase quadrotor system studied in Chapter 2.

Note that, with the proposed approach, it is expected that the performance en-

hancement of the DNN module is better for input trajectory frequencies closer to

those seen in the training phase; in practice, the DNN inverse module should be

trained on a dataset that sufficiently covers the operational space.

68 CHAPTER 3. INVERSE LEARNING FOR NON-MINIMUM PHASE SYSTEMS

6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7

% 5
7

%

6
0

%

6
3

%

6
0

%

4
8

%

6
1

%

5
4

%

7
1

%

5
7

%

8
1

%

6
3

%

6
1

% 6
0

%

5
8

%

5
8

%

5
2

%

5
2

%

5
9

%

5
3

%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%6
7
% 5

7
%

6
0
%

6
3
%

6
0
%

4
8
%

6
1
%

5
4
%

7
1
%

5
7
%

8
1
%

6
3
%

6
1
% 6

0
%

5
8
%

5
8
%

5
2
%

5
2
%

5
9
%

5
3
%

Non-Minimum Phase System (Baseline)

Non-Minimum Phase System (w/ Proposed DNN)

Minimum Phase System (Baseline)

Minimum Phase System (w/ Proposed DNN)

Figure 3.9: RMS tracking errors on 10 hand-drawn test trajectories (shown in Fig. 3.6)
for the modified non-minimum phase quadrotor system and the original minimum
phase quadrotor system. The percentage above each bar indicates the error reduction
achieved by the addition of the proposed DNN module. On average, the DNN modules
lead to approximately 60% error reductions for both the non-minimum phase and
minimum phase systems.

3.7 Conclusions

Many robotic systems can exhibit non-minimum phase behaviours; in this chapter, we

present a learning-based approach to enhance the impromptu tracking performance

of non-minimum phase systems. In our approach, a learning module approximates

the inverse of a stabilized baseline system, and the stability of the learning module

is ensured through appropriate input selection. As demonstrated with experiments

on a pendulum-cart and quadrotor system, the proposed approach, requiring only

input-output data of the baseline system, leads to significantly better performance as

compared to the ZOS approximate inverse, one of the typical model-based approaches

in the literature.

Chapter 4

Active Training Trajectory

Generation to Improve Sampling

Efficiency

4.1 Introduction

In previous chapters, we studied a DNN-based approach that enhances the trajectory

tracking performance of black-box control systems. In particular, a DNN module is

trained to approximate the inverse dynamics of the underlying system, and at test

time, it is pre-cascaded to the system to enhance the tracking performance (Fig. 2.1).

While we verified the efficacy of our approach with extensive experiments, one open

question that requires further exploration is a systematic trajectory generation ap-

proach for training the DNN inverse dynamics module.

In addition to our work, various neural network (NN)-based control architectures

have been proposed in the control literature. In these works, a common assumption is

that the NNs are trained on datasets that sufficiently cover the operational space [51].

In practical applications, this assumption often results in a trial-and-error process of

collecting data, training the model, testing in experiment, and repeating this process

until satisfactory control performance is achieved based on a representative dataset.

This trial-and-error process can lead to unnecessary training and related costs on

physical robots, or safety risks in industrial applications. This fact motivates us to

investigate approaches that guide the data collection process towards experiments

that are the most informative for (D)NN-based model learning.

From the machine learning literature, a concept that can be adopted for informa-

69

70 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

Optimize Training
Trajectory

Controller SystemDNN
(Inverse Module) -

Black-box Closed-loop System

Collect
Training

Data
Identify

Informative
Reference Input

for Training

DNN Training
(Active Trajectory Generation

and Training Loop)

Train
Network

yd
<latexit sha1_base64="gAfPK1l5gZThPcwgMSiKuaZTtk4=">AAAB63icbZDNSgMxFIXv1L86/lVdugmWgqsyIwVdFty4rGhboR1KJpNpQ5PMkGSEYegjuBIUxK1P5Mq3MW1noa0HAh/n3kvuPWHKmTae9+1UNja3tnequ+7e/sHhUe34pKeTTBHaJQlP1GOINeVM0q5hhtPHVFEsQk774fRmXu8/UaVZIh9MntJA4LFkMSPYWOs+H0WjWt1reguhdfBLqEOpzqj2NYwSkgkqDeFY64HvpSYosDKMcDpzG8NM0xSTKR7TgUWJBdVBsdh1hhrWiVCcKPukQQvX/TVRYKF1LkLbKbCZ6NXa3PyvNshMfB0UTKaZoZIsP4ozjkyC5oejiClKDM8tYKKYXRaRCVaYGBuPa1PwV29eh95l07d816q3W2UeVTiDc7gAH66gDbfQgS4QGMMzvMKbI5wX5935WLZWnHLmFP7I+fwBvD6N8Q==</latexit><latexit sha1_base64="gAfPK1l5gZThPcwgMSiKuaZTtk4=">AAAB63icbZDNSgMxFIXv1L86/lVdugmWgqsyIwVdFty4rGhboR1KJpNpQ5PMkGSEYegjuBIUxK1P5Mq3MW1noa0HAh/n3kvuPWHKmTae9+1UNja3tnequ+7e/sHhUe34pKeTTBHaJQlP1GOINeVM0q5hhtPHVFEsQk774fRmXu8/UaVZIh9MntJA4LFkMSPYWOs+H0WjWt1reguhdfBLqEOpzqj2NYwSkgkqDeFY64HvpSYosDKMcDpzG8NM0xSTKR7TgUWJBdVBsdh1hhrWiVCcKPukQQvX/TVRYKF1LkLbKbCZ6NXa3PyvNshMfB0UTKaZoZIsP4ozjkyC5oejiClKDM8tYKKYXRaRCVaYGBuPa1PwV29eh95l07d816q3W2UeVTiDc7gAH66gDbfQgS4QGMMzvMKbI5wX5935WLZWnHLmFP7I+fwBvD6N8Q==</latexit><latexit sha1_base64="gAfPK1l5gZThPcwgMSiKuaZTtk4=">AAAB63icbZDNSgMxFIXv1L86/lVdugmWgqsyIwVdFty4rGhboR1KJpNpQ5PMkGSEYegjuBIUxK1P5Mq3MW1noa0HAh/n3kvuPWHKmTae9+1UNja3tnequ+7e/sHhUe34pKeTTBHaJQlP1GOINeVM0q5hhtPHVFEsQk774fRmXu8/UaVZIh9MntJA4LFkMSPYWOs+H0WjWt1reguhdfBLqEOpzqj2NYwSkgkqDeFY64HvpSYosDKMcDpzG8NM0xSTKR7TgUWJBdVBsdh1hhrWiVCcKPukQQvX/TVRYKF1LkLbKbCZ6NXa3PyvNshMfB0UTKaZoZIsP4ozjkyC5oejiClKDM8tYKKYXRaRCVaYGBuPa1PwV29eh95l07d816q3W2UeVTiDc7gAH66gDbfQgS4QGMMzvMKbI5wX5935WLZWnHLmFP7I+fwBvD6N8Q==</latexit><latexit sha1_base64="gAfPK1l5gZThPcwgMSiKuaZTtk4=">AAAB63icbZDNSgMxFIXv1L86/lVdugmWgqsyIwVdFty4rGhboR1KJpNpQ5PMkGSEYegjuBIUxK1P5Mq3MW1noa0HAh/n3kvuPWHKmTae9+1UNja3tnequ+7e/sHhUe34pKeTTBHaJQlP1GOINeVM0q5hhtPHVFEsQk774fRmXu8/UaVZIh9MntJA4LFkMSPYWOs+H0WjWt1reguhdfBLqEOpzqj2NYwSkgkqDeFY64HvpSYosDKMcDpzG8NM0xSTKR7TgUWJBdVBsdh1hhrWiVCcKPukQQvX/TVRYKF1LkLbKbCZ6NXa3PyvNshMfB0UTKaZoZIsP4ozjkyC5oejiClKDM8tYKKYXRaRCVaYGBuPa1PwV29eh95l07d816q3W2UeVTiDc7gAH66gDbfQgS4QGMMzvMKbI5wX5935WLZWnHLmFP7I+fwBvD6N8Q==</latexit>

y
<latexit sha1_base64="LEfabVm3yOruL0pUBaYs/kv79Hs=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCKP0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDB5ikFMx5JHnFFjrXY+rFS9urcU2QS/gCoUag0rX4NRwrIYpWGCat33vdQEM6oMZwLnbm2QaUwpm9Ix9i1KGqMOZstN56RmnRGJEmWfNGTpur8mZjTWOo9D2xlTM9HrtYX5X62fmeg2mHGZZgYlW30UZYKYhCzOJiOukBmRW6BMcbssYROqKDM2HNem4K/fvAnd67pvud2oNhtFHmW4gEu4Ah9uoAn30IIOMEB4hld4c6bOi/PufKxaS04xcw5/5Hz+AEjDjRo=</latexit><latexit sha1_base64="LEfabVm3yOruL0pUBaYs/kv79Hs=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCKP0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDB5ikFMx5JHnFFjrXY+rFS9urcU2QS/gCoUag0rX4NRwrIYpWGCat33vdQEM6oMZwLnbm2QaUwpm9Ix9i1KGqMOZstN56RmnRGJEmWfNGTpur8mZjTWOo9D2xlTM9HrtYX5X62fmeg2mHGZZgYlW30UZYKYhCzOJiOukBmRW6BMcbssYROqKDM2HNem4K/fvAnd67pvud2oNhtFHmW4gEu4Ah9uoAn30IIOMEB4hld4c6bOi/PufKxaS04xcw5/5Hz+AEjDjRo=</latexit><latexit sha1_base64="LEfabVm3yOruL0pUBaYs/kv79Hs=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCKP0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDB5ikFMx5JHnFFjrXY+rFS9urcU2QS/gCoUag0rX4NRwrIYpWGCat33vdQEM6oMZwLnbm2QaUwpm9Ix9i1KGqMOZstN56RmnRGJEmWfNGTpur8mZjTWOo9D2xlTM9HrtYX5X62fmeg2mHGZZgYlW30UZYKYhCzOJiOukBmRW6BMcbssYROqKDM2HNem4K/fvAnd67pvud2oNhtFHmW4gEu4Ah9uoAn30IIOMEB4hld4c6bOi/PufKxaS04xcw5/5Hz+AEjDjRo=</latexit><latexit sha1_base64="LEfabVm3yOruL0pUBaYs/kv79Hs=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCKP0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDB5ikFMx5JHnFFjrXY+rFS9urcU2QS/gCoUag0rX4NRwrIYpWGCat33vdQEM6oMZwLnbm2QaUwpm9Ix9i1KGqMOZstN56RmnRGJEmWfNGTpur8mZjTWOo9D2xlTM9HrtYX5X62fmeg2mHGZZgYlW30UZYKYhCzOJiOukBmRW6BMcbssYROqKDM2HNem4K/fvAnd67pvud2oNhtFHmW4gEu4Ah9uoAn30IIOMEB4hld4c6bOi/PufKxaS04xcw5/5Hz+AEjDjRo=</latexit>

u
<latexit sha1_base64="RwYn/ky2cDLUnmnPTRLACQyKdfI=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDCzFIOYjiWPOKPGWu1sWKl6dW8psgl+AVUo1BpWvgajhGUxSsME1brve6kJcqoMZwLnbm2QaUwpm9Ix9i1KGqMO8uWmc1KzzohEibJPGrJ03V8TOY21nsWh7Yypmej12sL8r9bPTHQb5FymmUHJVh9FmSAmIYuzyYgrZEbMLFCmuF2WsAlVlBkbjmtT8Ndv3oTudd233G5Um40ijzJcwCVcgQ830IR7aEEHGCA8wyu8OVPnxXl3PlatJaeYOYc/cj5/AEKvjRY=</latexit><latexit sha1_base64="RwYn/ky2cDLUnmnPTRLACQyKdfI=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDCzFIOYjiWPOKPGWu1sWKl6dW8psgl+AVUo1BpWvgajhGUxSsME1brve6kJcqoMZwLnbm2QaUwpm9Ix9i1KGqMO8uWmc1KzzohEibJPGrJ03V8TOY21nsWh7Yypmej12sL8r9bPTHQb5FymmUHJVh9FmSAmIYuzyYgrZEbMLFCmuF2WsAlVlBkbjmtT8Ndv3oTudd233G5Um40ijzJcwCVcgQ830IR7aEEHGCA8wyu8OVPnxXl3PlatJaeYOYc/cj5/AEKvjRY=</latexit><latexit sha1_base64="RwYn/ky2cDLUnmnPTRLACQyKdfI=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDCzFIOYjiWPOKPGWu1sWKl6dW8psgl+AVUo1BpWvgajhGUxSsME1brve6kJcqoMZwLnbm2QaUwpm9Ix9i1KGqMO8uWmc1KzzohEibJPGrJ03V8TOY21nsWh7Yypmej12sL8r9bPTHQb5FymmUHJVh9FmSAmIYuzyYgrZEbMLFCmuF2WsAlVlBkbjmtT8Ndv3oTudd233G5Um40ijzJcwCVcgQ830IR7aEEHGCA8wyu8OVPnxXl3PlatJaeYOYc/cj5/AEKvjRY=</latexit><latexit sha1_base64="RwYn/ky2cDLUnmnPTRLACQyKdfI=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFmwrtKFstpN26WYTdjdCCf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+2UtrZ3dvfK++7B4dHxSeX0rKuTTDHssEQk6jGkGgWX2DHcCHxMFdI4FNgLp3eLeu8JleaJfDCzFIOYjiWPOKPGWu1sWKl6dW8psgl+AVUo1BpWvgajhGUxSsME1brve6kJcqoMZwLnbm2QaUwpm9Ix9i1KGqMO8uWmc1KzzohEibJPGrJ03V8TOY21nsWh7Yypmej12sL8r9bPTHQb5FymmUHJVh9FmSAmIYuzyYgrZEbMLFCmuF2WsAlVlBkbjmtT8Ndv3oTudd233G5Um40ijzJcwCVcgQ830IR7aEEHGCA8wyu8OVPnxXl3PlatJaeYOYc/cj5/AEKvjRY=</latexit>

x
<latexit sha1_base64="RFZIFILbEyhuqz32SNN7gNtFXKg=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFuwHtKFstpN26WYTdjdiKf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+0UtrZ3dveK++7B4dHxSen0rK2TTDFssUQkqhtSjYJLbBluBHZThTQOBXbCyd2i3nlEpXkiH8w0xSCmI8kjzqixVvNpUCp7VW8psgl+DmXI1RiUvvrDhGUxSsME1brne6kJZlQZzgTO3Uo/05hSNqEj7FmUNEYdzJabzknFOkMSJco+acjSdX9NzGis9TQObWdMzViv1xbmf7VeZqLbYMZlmhmUbPVRlAliErI4mwy5QmbE1AJlittlCRtTRZmx4bg2BX/95k1oX1d9y81auV7L8yjCBVzCFfhwA3W4hwa0gAHCM7zCmzNxXpx352PVWnDymXP4I+fzB0c+jRk=</latexit><latexit sha1_base64="RFZIFILbEyhuqz32SNN7gNtFXKg=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFuwHtKFstpN26WYTdjdiKf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+0UtrZ3dveK++7B4dHxSen0rK2TTDFssUQkqhtSjYJLbBluBHZThTQOBXbCyd2i3nlEpXkiH8w0xSCmI8kjzqixVvNpUCp7VW8psgl+DmXI1RiUvvrDhGUxSsME1brne6kJZlQZzgTO3Uo/05hSNqEj7FmUNEYdzJabzknFOkMSJco+acjSdX9NzGis9TQObWdMzViv1xbmf7VeZqLbYMZlmhmUbPVRlAliErI4mwy5QmbE1AJlittlCRtTRZmx4bg2BX/95k1oX1d9y81auV7L8yjCBVzCFfhwA3W4hwa0gAHCM7zCmzNxXpx352PVWnDymXP4I+fzB0c+jRk=</latexit><latexit sha1_base64="RFZIFILbEyhuqz32SNN7gNtFXKg=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFuwHtKFstpN26WYTdjdiKf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+0UtrZ3dveK++7B4dHxSen0rK2TTDFssUQkqhtSjYJLbBluBHZThTQOBXbCyd2i3nlEpXkiH8w0xSCmI8kjzqixVvNpUCp7VW8psgl+DmXI1RiUvvrDhGUxSsME1brne6kJZlQZzgTO3Uo/05hSNqEj7FmUNEYdzJabzknFOkMSJco+acjSdX9NzGis9TQObWdMzViv1xbmf7VeZqLbYMZlmhmUbPVRlAliErI4mwy5QmbE1AJlittlCRtTRZmx4bg2BX/95k1oX1d9y81auV7L8yjCBVzCFfhwA3W4hwa0gAHCM7zCmzNxXpx352PVWnDymXP4I+fzB0c+jRk=</latexit><latexit sha1_base64="RFZIFILbEyhuqz32SNN7gNtFXKg=">AAAB6XicbZBNS8NAEIYn9avGr6pHL4ul4KkkUtBjwYvHFuwHtKFstpN26WYTdjdiKf0FngQF8epP8uS/cdvmoK0vLDy8M8POvGEquDae9+0UtrZ3dveK++7B4dHxSen0rK2TTDFssUQkqhtSjYJLbBluBHZThTQOBXbCyd2i3nlEpXkiH8w0xSCmI8kjzqixVvNpUCp7VW8psgl+DmXI1RiUvvrDhGUxSsME1brne6kJZlQZzgTO3Uo/05hSNqEj7FmUNEYdzJabzknFOkMSJco+acjSdX9NzGis9TQObWdMzViv1xbmf7VeZqLbYMZlmhmUbPVRlAliErI4mwy5QmbE1AJlittlCRtTRZmx4bg2BX/95k1oX1d9y81auV7L8yjCBVzCFfhwA3W4hwa0gAHCM7zCmzNxXpx352PVWnDymXP4I+fzB0c+jRk=</latexit>

Desired
Output

Reference Actual
Output

State

Control Architecture
(DNN-based Architecture for Enhancing Tracking Performance)

u
<latexit sha1_base64="FOnSGF4tcWUPLjy1DKjS49/MxjI=">AAACJnicdVDLSgMxFM3UVx1foy7dBEtBQUpmVKbuCm5cVrAPaIeSSTNtaOZBkhHK0G/wN/wBt/oH7kTcufI7TKctWNEDgcM595XjJ5xJhdCHUVhZXVvfKG6aW9s7u3vW/kFTxqkgtEFiHou2jyXlLKINxRSn7URQHPqctvzR9dRv3VMhWRzdqXFCvRAPIhYwgpWWetZpN5/REQPfy1DFQVdV1z1DlfNL10GOJq7toqozMdOeVVr4cOHDhQ/tCspRAnPUe9ZXtx+TNKSRIhxL2bFRorwMC8UIpxOz3E0lTTAZ4QHtaBrhkEovy++ZwLJW+jCIhX6Rgrlq/ujIcCjlOPR1ZYjVUP72puKf3my+ubRcBVUvY1GSKhqR2e4g5VDFcJoZ7DNBieJjTTARTN8PyRALTJRO1tTBLH4P/ydNp2JrfntRqjnziIrgCByDE2ADF9TADaiDBiDgATyBZ/BiPBqvxpvxPistGPOeQ7AE4/MbTZehuQ==</latexit><latexit sha1_base64="FOnSGF4tcWUPLjy1DKjS49/MxjI=">AAACJnicdVDLSgMxFM3UVx1foy7dBEtBQUpmVKbuCm5cVrAPaIeSSTNtaOZBkhHK0G/wN/wBt/oH7kTcufI7TKctWNEDgcM595XjJ5xJhdCHUVhZXVvfKG6aW9s7u3vW/kFTxqkgtEFiHou2jyXlLKINxRSn7URQHPqctvzR9dRv3VMhWRzdqXFCvRAPIhYwgpWWetZpN5/REQPfy1DFQVdV1z1DlfNL10GOJq7toqozMdOeVVr4cOHDhQ/tCspRAnPUe9ZXtx+TNKSRIhxL2bFRorwMC8UIpxOz3E0lTTAZ4QHtaBrhkEovy++ZwLJW+jCIhX6Rgrlq/ujIcCjlOPR1ZYjVUP72puKf3my+ubRcBVUvY1GSKhqR2e4g5VDFcJoZ7DNBieJjTTARTN8PyRALTJRO1tTBLH4P/ydNp2JrfntRqjnziIrgCByDE2ADF9TADaiDBiDgATyBZ/BiPBqvxpvxPistGPOeQ7AE4/MbTZehuQ==</latexit><latexit sha1_base64="FOnSGF4tcWUPLjy1DKjS49/MxjI=">AAACJnicdVDLSgMxFM3UVx1foy7dBEtBQUpmVKbuCm5cVrAPaIeSSTNtaOZBkhHK0G/wN/wBt/oH7kTcufI7TKctWNEDgcM595XjJ5xJhdCHUVhZXVvfKG6aW9s7u3vW/kFTxqkgtEFiHou2jyXlLKINxRSn7URQHPqctvzR9dRv3VMhWRzdqXFCvRAPIhYwgpWWetZpN5/REQPfy1DFQVdV1z1DlfNL10GOJq7toqozMdOeVVr4cOHDhQ/tCspRAnPUe9ZXtx+TNKSRIhxL2bFRorwMC8UIpxOz3E0lTTAZ4QHtaBrhkEovy++ZwLJW+jCIhX6Rgrlq/ujIcCjlOPR1ZYjVUP72puKf3my+ubRcBVUvY1GSKhqR2e4g5VDFcJoZ7DNBieJjTTARTN8PyRALTJRO1tTBLH4P/ydNp2JrfntRqjnziIrgCByDE2ADF9TADaiDBiDgATyBZ/BiPBqvxpvxPistGPOeQ7AE4/MbTZehuQ==</latexit><latexit sha1_base64="FOnSGF4tcWUPLjy1DKjS49/MxjI=">AAACJnicdVDLSgMxFM3UVx1foy7dBEtBQUpmVKbuCm5cVrAPaIeSSTNtaOZBkhHK0G/wN/wBt/oH7kTcufI7TKctWNEDgcM595XjJ5xJhdCHUVhZXVvfKG6aW9s7u3vW/kFTxqkgtEFiHou2jyXlLKINxRSn7URQHPqctvzR9dRv3VMhWRzdqXFCvRAPIhYwgpWWetZpN5/REQPfy1DFQVdV1z1DlfNL10GOJq7toqozMdOeVVr4cOHDhQ/tCspRAnPUe9ZXtx+TNKSRIhxL2bFRorwMC8UIpxOz3E0lTTAZ4QHtaBrhkEovy++ZwLJW+jCIhX6Rgrlq/ujIcCjlOPR1ZYjVUP72puKf3my+ubRcBVUvY1GSKhqR2e4g5VDFcJoZ7DNBieJjTTARTN8PyRALTJRO1tTBLH4P/ydNp2JrfntRqjnziIrgCByDE2ADF9TADaiDBiDgATyBZ/BiPBqvxpvxPistGPOeQ7AE4/MbTZehuQ==</latexit>

Figure 4.1: A DNN-based control architecture (top) was proposed in Chapter 2 to
enhance the tracking performance of black-box, closed-loop control systems. In this
chapter, we study an episode-based active trajectory generation approach (bottom)
for systematically training the DNN inverse dynamics module. With the proposed
approach, the DNN module is trained in a closed-loop manner, where in each episode,
informative points for training the DNN module are identified and a smooth trajectory
is generated for collecting the data in the next set of robotics experiments.

tive DNN training data collection is active learning [91]. With active learning, instead

of passively training the learner using a pre-collected dataset, the learner is allowed to

‘actively select’ the most informative points to query. This concept has been applied

to various machine learning problems such as segmentation and image/text classifi-

cation with the goal of saving the time and cost associated with manually labelling

datasets [91]. In this chapter, we adopt the idea of active learning and propose an

optimization framework that allows us to systematically generate feasible and infor-

mative trajectories for training DNN inverse dynamics models. With the proposed

active trajectory generation framework, we aim to (1) improve the efficiency of the

data collection and (2) provide a means for monitoring when the training of DNN-

based robot model learning is sufficient.

4.2 Related Work

The concept of active learning is closely tied to the theory of optimal experimental

design (OED), which is a branch of statistics that outlines the mathematical founda-

tions and statistical criterion for automating query selections [92]. The theory of OED

has been discussed in a wide range of contexts including neuroscience [93], system

4.3. PROBLEM STATEMENT 71

identification [94], structural optimization [95], and experimental economics [96]. In

these different applications, the shared goal for OED is to maximize the information

content gathered about an underlying process of interest with limited experiments.

While OED can encompass experimental conditions in a broader sense, active

learning focuses on input design for black-box models. As shown in [97], common ac-

tive learning heuristics such as uncertainty sampling can be connected mathematically

to OED optimality criteria. Examples of active learning can be found in classification

tasks, where unlabelled images or text are selected heuristically to minimize predic-

tion errors [98, 99], or in regression tasks [100, 101, 102], where regions lacking data

are identified for further exploration. As discussed in [103], in addition to improved

data efficiency, with controlled input selection, active learning is also a way to en-

hance generalization of black-box models. Despite its advantages, it should be noted

that typical frameworks of active learning provide a set of informative points but do

not account for issues such as continuity or feasibility constraints that are critical to

collecting data on physical robots for model learning.

In the literature, one approach to account for feasibility constraints is to

parametrize an input trajectory and formulate an optimization problem for trajec-

tory generation [104]. This approach has been utilized to generate excitation trajec-

tories for identifying dynamic parameters of manipulators [105, 106, 107]. In partic-

ular, the identification of the manipulator dynamics is written as a linear regression

problem. The joint trajectories are parametrized as splines [106] or harmonic func-

tions [107, 105], and the trajectory parameters are optimized to minimize the model

parameter uncertainty or the condition number of the linear regression model. In this

chapter, we similarly formulate an optimization problem for generating input trajec-

tories. However, we present a method that incorporates an active learning objective

for training generic inverse dynamics models parametrized as DNNs.

4.3 Problem Statement

We consider the DNN-enhanced control architecture shown in Fig. 4.1. In this

learning-based approach, a DNN module is trained offline to approximate the inverse

dynamics of a baseline closed-loop system. The trained DNN is then pre-cascaded

to the baseline system at test time to enhance its tracking performance. The goal of

this work is to derive a framework that allows us to design informative trajectories

for systematically training the DNN inverse module.

72 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

We consider a baseline closed-loop system represented by

x(k + 1) = f (x(k)) + g (x(k))u(k),

y(k) = h (x(k)) ,
(4.1)

where k is the discrete time index, x ∈ Rn is the system state, u ∈ R is the reference

of the closed-loop baseline system, y ∈ R is the output, and f , g, and h are smooth

functions with consistent dimensions. System (4.1) is said to have a relative degree

r around an operating point (x0, u0) if (i) ∂
∂u
h ◦ fp(f(x(k)) + g(x(k))u(k)) = 0, ∀p =

0, ..., r−2 for each point in the neighbourhood of (x0, u0), and (ii) ∂
∂u
h◦f r−1

(
f(x(k))+

g(x(k))u(k)
)
6= 0 at (x0, u0), where h ◦ f is the composition of the functions h and

f , and fp(·) denotes the pth composition of f , with f 0(x(t)) = x(t) [59]. As shown

in Chapter 2, if a system has a well-defined relative degree r, and y(k+ r) is affine in

u(k), we can derive the reference for exact tracking (i.e., y(k + r) = yd(k + r)):

u(k) = G−1
(
x(k)

)(
yd(k + r)−F (x(k))

)
, (4.2)

where F (x(k)) = h ◦ f r(x(k)) and G (x(k)) = ∂
∂u
h ◦ f r−1(f(x(k)) + g(x(k))u(k)).

When the exact dynamics of the baseline system (4.1) is unknown but it is minimum

phase and has a well-defined relative degree, then we can train a DNN module to

approximate (4.2) to effectively enhance the tracking performance of the baseline

system:

u(k) = Fθ (x(k), yd(k + r)) , (4.3)

where Fθ(·) denotes the nonlinear function represented by the DNN module, and

θ denotes the DNN module parameters. This approach is generally applicable to

systems such as quadrotors and robot manipulators.

We consider an episode-based training trajectory generation framework outlined

in Alg. 4.3.1 for systematically training the DNN inverse module. In each episode,

we first identify the informative points for training the DNN module and formulate

an optimization problem to generate a training trajectory {u(k)}, k = 0, ..., K, where

K is the predefined training trajectory length. The generated training trajectory is

sent to the baseline system, and the input-output response data {x(k), y(k), u(k)} is

recorded. The training dataset for the DNN model is extended using the obtained

system response data, where the paired input and output of the training dataset are

ξ = [x(k), y(k + r)] and γ = u(k), respectively. Given this dataset, the DNN module

is trained with standard stochastic gradient descent (SGD) algorithms. In the next

4.4. BACKGROUND ON ACTIVE LEARNING FOR DNNS 73

Algorithm 4.3.1 Episode-based Training Trajectory Optimization for DNN In-
verse Dynamics Model Learning

1: Initialize with some trajectory {u(k)} for k = 1, ..., K
2: while not converged do
3: Run the training trajectory on the baseline system and record the input-output

response data {x(k), y(k), u(k)} for k = 0, ..., K
4: Extend DNN training dataset with input ξ = [x(k), yd(k + r)] and output
γ = u(k)

5: Train DNN inverse dynamics model on the dataset
6: Select training points that maximize an active learning utility function
7: Form a quadratic program (QP) to obtain a feasible training trajectory {u(k)}

for k = 0, ..., K
8: end while

sections, we derive the details of the proposed active training trajectory generation

in Ln. 6-7 of Alg. 4.3.1.

4.4 Background on Active Learning for DNNs

In this section, we provide a brief summary of the active learning literature for DNNs

to facilitate our discussion.

4.4.1 DNN Model Preliminaries

We consider a L-layer fully-connected DNN denoted by γ = Fθ(ξ), where ξ is the

input to the network, γ is its output, and θ = (w1, ..., wL, b1, ..., bL) is an augmented

vector of weights and biases parametrizing the network. We can express an L-layer

network Fθ as

ζ0 = ξ,

ζl = σ (wlζl−1 + bl) , ∀l = 1, ..., L− 1,

γ = wLζL−1 + bL,

(4.4)

where wl ∈ RNl×Nl−1 and bl ∈ RNl , Nl is the number of neurons in a hidden layer,

σ : RNl 7→ RNl is the element-wise activation operation applied in a hidden layer, and

ζl for l = 1, ..., L − 1 is the output of a hidden layer. Given a training dataset with

D paired input-output points D = {ξd, γd}Dd=1, SGD algorithms can be used to find a

set of parameters θ that minimizes the network prediction error.

74 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

4.4.2 Predictive Uncertainty Estimation for DNNs

Common active learning heuristics are based on the uncertainty of the learner’s output

predictions (i.e., the predictive uncertainty). For each input, there is a corresponding

prediction of mean and variance of the output. Intuitively, with active learning, we

wish to collect data at inputs which the learner is uncertain about. We review three

common predictive uncertainty estimation techniques for DNNs.

Fisher Information: We assume that the conditional probabilities p(γ | ξ, θ)
at distinct inputs ξ are independent Gaussian distributions with expectations

Ep(γ | ξ,θ)[γ | ξ, θ] = Fθ(ξ), where Ep(γ | ξ,θ)[·] denotes the expectation over p(γ | ξ, θ).
We can approximate the predictive variance at a given input ξ as

Vp(γ | ξ,θ)[γ | ξ, θ] = ∇θFθ(ξ)
TM−1∇θFθ(ξ), (4.5)

where ∇θ denotes the gradient with respect to the parameters θ, and M =
1
S2

∑D
d=1∇θFθ(ξd)∇θFθ(ξd)

T with S2 = 1
2D

∑D
d=1 ||Fθ(ξd) − γd||2 approximates the

Fisher information matrix, which the inverse characterizes the lower bound on the

parameter uncertainties [108].

Bagging: Bagging is a method providing an empirical estimate of the predictive

uncertainty for DNNs. In typical implementations, an ensemble of DNN models

is trained, and randomization is introduced to the DNN ensemble via randomized

batch samples and/or initial weights [109]. The predictive variance at a given input

is estimated based on the empirical variance of the DNN outputs.

Dropout Approximate Inference: An alternative ensemble uncertainty estimation

technique is based on dropout approximate inference, which can be interpreted as a

variational approximation of the Bayesian inference performed with deep Gaussian

processes [100]. In this approach, a single DNN is trained with stochastic dropout [76].

The predictive variance of the DNN at test time is estimated based on multiple

forward passes with independently sampled dropout units:

Vp(γ | ξ,θ)[γ | ξ, θ] = Ŝ2 + τ−1I, (4.6)

where Ŝ2 is an empirical estimate of the predictive variance found via multiple forward

passes, τ =
pkeepl

2

2Kλ
is the model precision, pkeep is the dropout Bernoulli distribution

parameter, K is the data size, and I is the identity matrix [100].

4.5. ACTIVE TRAINING TRAJECTORY GENERATION 75

4.4.3 Measures of Informativeness

With active learning, our goal is to collect data D that maximizes the information we

gain about the underlying process. We denote a generic active learning problem as

ξ∗ = arg max
ξ

U(ξ, θ), (4.7)

where U denotes an utility function that measures the amount of information provided

by querying ξ. We briefly review the common active learning heuristics for DNNs.

More thorough discussions can be found in review papers such as [91].

Uncertainty Sampling: Uncertainty sampling is an active learning heuristic that

encourages selecting an input ξ∗ about which the model is currently the most uncer-

tain. The utility function can be written as UUS = H(γ | ξ, θ), where H(·) denotes the

entropy of a random variable and is a monotonic function of variance for a Gaussian

distribution. Intuitively, uncertainty sampling encourages the selection of an input

ξ∗ that the model is currently the most uncertain about.

Ensemble-based Approach: In an ensemble-based approach, multiple DNN models

are trained for making predictions, and the extent of disagreement is used as the

measure of information. This approach can be thought as a variation of uncertainty

sampling, where the uncertainty is estimated by the empirical variance of the DNN

ensemble [91].

Information Gain: Information gain characterizes the expected regression

error reduction for an unbiased learner [110]. It is defined as UIG =

Ep(ξ′)
[
H(γ | ξ′, θ)− Ep(γ | ξ,θ)[H(γ | ξ′, θ+)]

]
, where θ+ is the parameter if the DNN is

trained on a candidate input ξ, where the second term in the expectation represents

the expected entropy of the learner after the new data point is added for training.

4.5 Active Training Trajectory Generation

In this section, we formulate the active training trajectory generation framework for

DNN inverse dynamics learning.

4.5.1 Spline Trajectory Generation

We adopt a trajectory generation framework similar to [104]. In particular, we con-

sider reference trajectories parametrized by Nth-order polynomial splines Ts(t) =∑N
n=0 ps,nt

n joined at prescribed times {t1, ..., tS−1}, where Ts is the sth polynomial

76 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

of the spline, t is the continuous time, and ps,n are the coefficients of the sth polyno-

mial. The smoothness of the reference trajectories is enforced by penalizing the mth

derivative of the spline:

min
p

∫ tS

t0

∣∣∣∣T (m)(t)
∣∣∣∣2 dt

s.t. Ts(τ) = T̄ (τ),∀s = 1, ..., S, τ = {ts−1, ts},

T (l)
s (ts) = T

(l)
s+1(ts),∀s = 1, ..., S − 1,

l = 1, ..., lmax,

(4.8)

where T (t) denotes the spline trajectory, T̄ (t) is the predefined waypoint at t, || · ||
denotes the Euclidean norm, p = (p1, ..., pS) is an augmented vector with ps containing

the coefficients of the sth polynomial segment (in ascending order), t0, ..., tS are the

times corresponding to the interior points of the spline trajectory, and lmax is the

order of continuity enforced at the interior points.

By substituting the definition of Ts(t) into (4.8) and computing the derivatives,

one can show that the spline trajectory generation in (4.8) can be formulated as

min
p1,...,pS

S∑
s=1

pTsQsps

s.t. Asps − bs = 0, ∀s = 1, ..., S,

Ap = 0,

(4.9)

where Qs is a matrix enforcing smoothness of the sth polynomial segment, and the

pairs (As, bs) and the matrix A enforce continuity constraints at the interior points

of the spline. The matrix Qs for the sth polynomial is

Qs =

 0m×m 0m×(N−m+1)

0(N−m+1)×m C̃T Q̃sC̃

 , (4.10)

where C̃ = diag(c(m), ..., c(N)), c(q) =
∏l−1

i=0 q − i, and

Q̃s =


ts − ts−1 · · · tN−m+1

s −tN−m+1
s−1

N−m+1
... . .

. ...
tN−m+1
s −tN−m+1

s−1

N−m+1
· · · t

2(N−m)+1
s −t2(N−m)+1

s−1

2(N−m)+1

 . (4.11)

4.5. ACTIVE TRAINING TRAJECTORY GENERATION 77

For the continuity constraints, we note that the lth derivative of Ts evaluated at

time t is T
(l)
s (t) = Aslt ps, where Aslt =

[
0l c(l) c(l + 1)t · · · c(N)tN−l

]
, where 0l is a

zero row vector with dimension indicated by the subscript. The zero-order continuity

constraint can be enforced by setting

As =

[
As0ts−1

As0ts

]
and bs =

[
T̄ (ts−1)

T̄ (ts)

]
. (4.12)

The higher-order continuity constraints at the interior points are introduced with A.

For instance, the lth-order continuity enforced at t between the sth and (s + 1)th

polynomials can be introduced by augmenting the following row to the matrix

[A]i =
[
0(s−1)(N+1) Aslt −A(s+1)lt 0(S−s−1)(N+1)

]
, (4.13)

where [A]i denotes the ith row of A.

4.5.2 Integrating Active Learning and Trajectory Optimiza-

tion

In this subsection, we integrate the active learning concept discussed in Sec. 4.4 and

the spline trajectory generation approach presented in Sec. 4.5.1.

Based on the approaches discussed in Sec. 4.4, in each episode, we estimate the

DNN module predictive uncertainty and calculate the utility over the DNN input

space. This allows us to identify a set of points in the DNN input space that are the

most informative for training the DNN module:

ξ∗ = arg max
ξ

U(ξ, θ), (4.14)

where ξ = [x(k), y(k + r)] and γ = u(k) for our problem.

In contrast to typical active learning applications, where the input ξ∗ is directly

used as the next point to query, for our inverse learning problem, we need to identify

the informative DNN outputs γ∗ (i.e., the informative references) to be sent to the

baseline system. To this end, given the informative input(s) ξ∗, we evaluate the

corresponding outputs of the DNN module γ∗ = Fθ(ξ
∗) and the associated standard

deviations ∆γ at these inputs. A set of candidate DNN outputs γ∗s are sampled

from N (γ∗, α∆γ), where N (γ∗, α∆γ) denotes a Gaussian distribution with a mean

of γ∗ and a standard deviation of α∆γ, and α ≥ 1 is a parameter that controls the

78 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

range of exploration. Intuitively, if the uncertainty estimates of the DNN module are

sufficiently accurate, the samples γ∗s encourage explorations over regions where the

DNN module is currently uncertain, where the range of exploration is proportional

to the extent of uncertainty. We treat γ∗s as the informative reference points that are

used in the generation of the training trajectory for the DNN inverse module.

The samples γ∗s are incorporated into the spline trajectory generation algorithm as

constraints at the interior points. In particular, we formulate the following problem:

min
p1,...,pS

S∑
s=1

pTsQsps

s.t. Asps = γ∗s , ∀s = 1, ..., S,

Ap = 0,

Asltips ≤ bsl,max, ∀ti ∈ T ,

(4.15)

where T is a set of sample times along the trajectory, and the inequality constraints

introduced with the pairs (Aslti , bsl,max) can be used to account for additional feasi-

bility constraints (e.g., bounds on velocities and accelerations).

Note that we optimize a continuous-time trajectory T (t). The trajectory is dis-

cretized at a defined sampling interval ∆t to obtain the sequence of references {u(k)}
for training.

4.6 Simulation Results

In this section, we use a numerical example to illustrate the proposed active training

trajectory generation. We consider a minimum phase baseline system represented by

x(k + 1) =

[
0 1

−0.15 0.8

]
x(k) +

[
0

1

]
u(k)

y(k) =
[
−0.2 0.5

]
x(k).

(4.16)

Following (4.3), we can train a DNN module with input ξ = [x(k), yd(k + 1)] and

output γ = u(k) to approximate the exact inverse of the baseline system (4.2). In

Chapter 2, with a similar system, we showed that the DNN inverse learning approach

can reduce the tracking error of the baseline system to approximately zero.

Although being effective at test time, the DNN module in our previous work was

trained on hand-designed sinusoidal trajectories; the quality of the training could only

4.6. SIMULATION RESULTS 79

Fisher Information Bagging Dropout Approximate Inference

u

-4

-2

0

2

4
DNN Adjusted DNN Std. Dev. Exact Inverse

-4

-2

0

2

4
DNN Adjusted DNN Std. Dev. Exact Inverse

-4

-2

0

2

4
DNN Adjusted DNN Std. Dev. Exact Inverse

e

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

0 5 10 15 20 25
-1.5

-1

-0.5

0

0.5

Time, t Time, t Time, t

Figure 4.2: A comparison of the references u and the tracking errors, e = yd − y,
of three DNN-enhanced systems implemented based on different uncertainty estima-
tion techniques: (i) Fisher information, (ii) bagging, and (iii) dropout approximate
inverse. The results correspond to a test trajectory yd(t) = 3

5
cos
(
π
3
t
)

+ sin
(
π
5
t
)

+
sin
(
π
10
t
)
− 3

5
. From the plots, it can be seen that at time steps where the DNNs are

uncertain (blue shadings in the top row), we correspondingly observe relatively large
tracking errors (regions shaded in grey); conversely, at time steps where the DNNs are
certain, the tracking errors of the DNN-enhanced systems are close to zero (unshaded
regions). Given the correlation between the DNN uncertainty and the tracking error,
we can then exploit the uncertainty information to efficiently design trajectories for
training the DNN inverse modules.

be validated when the DNN module is tested on the baseline system. In the following

simulation study, we illustrate the active-learning-based framework for systematically

designing DNN training trajectories. This framework allows us to (i) infer training

quality prior to testing the DNN module on the system and (ii) efficiently collect data

that is needed for good generalization. In the following subsections, we first present

a set of simulations to examine the correlation between the predictive uncertainty of

the DNN module and the system’s tracking performance (Sec. 4.6.1) and then utilize

the uncertainty estimates in the proposed active learning framework for DNN training

trajectory design (Sec. 4.6.2).

4.6.1 DNN Predictive Uncertainty Estimation

In this subsection, we examine three techniques for estimating the DNN inverse dy-

namics module’s predictive uncertainty: (i) Fisher-information-based estimation, (ii)

bagging, and (iii) dropout approximate inference (see Sec. 4.4.2).

80 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

4.6.1.1 Architecture of the DNN Inverse Module

For the three techniques we implement in this simulation study, the DNNs are three-

layer feedforward networks, and each hidden layer of the networks has ten hyperbolic

tangent neurons. There are overall 161 weight and bias parameters in each network.

The DNN modules are initially trained on a sinusoidal trajectory yd(t) = sin
(
π
10
t
)

sampled at ∆t = 0.015. The training dataset is constructed from the system response

data with paired input and output D = {x(k), y(k+ 1);u(k)}Kk=1, where K is the size

of the training dataset. Standard SGD algorithms are used for optimizing the network

parameters.

4.6.1.2 Implementation of the Different Uncertainty Estimation Tech-

niques

The Fisher-information-based approach is implemented for a DNN module with a

single network. The predictive uncertainty of the DNN module at test time is com-

puted based on (4.5), where the module input and output are ξ = [x(k), yd(k + 1)]

and γ = u(k), respectively. The inverse of the Fisher information matrix M is inde-

pendent of the input ξ, and we pre-compute M−1 from the training data to minimize

the computational load at test time. For the bagging approach, we use a committee

of 20 DNNs trained with different randomly sampled initial parameters [109]. The

uncertainty of the DNN module at test time is estimated based on the empirical

variance of the committee outputs. For the dropout approximate inference approach,

we train a DNN with stochastic dropout [76, 100]. The uncertainty of the DNN at

test time is estimated using (4.6). Here, we use 300 forward passes with independent

weight dropout samples, and the dropout probability is 0.05.

4.6.1.3 Simulation Results

We show the results of the DNN predictive uncertainty estimation techniques on

a test trajectory yd(t) = 3
5

cos
(
π
3
t
)

+ sin
(
π
5
t
)

+ sin
(
π
10
t
)
− 3

5
. This test trajectory

differs from the training trajectory, and the DNN inputs encountered at test time are

only partially covered by the training dataset. Fig. 4.2 shows the predictions of the

DNN modules (top row) and the resulting tracking errors of the corresponding DNN-

enhanced systems (bottom row). The time intervals where the systems have relatively

larger tracking errors are shaded in grey. From the unshaded regions of the plots, we

see that when the uncertainty of the DNN module is small, the reference computed by

the DNN module coincides with the reference computed based on the exact inverse

4.6. SIMULATION RESULTS 81

of the system (4.2), and the tracking error of the DNN-enhanced system is close

to zero. From the shaded regions, for each technique, we see a correlation between

the uncertainties of the DNN modules and the tracking errors of the DNN-enhanced

systems. Given this correlation, we can then exploit the uncertainty information to

efficiently design trajectories for training the DNN inverse module.

4.6.2 Active Training Trajectory Generation

In Chapter 2, we verified the DNN inverse learning approach by training the DNN

module using hand-designed trajectories. In this subsection, we illustrate the pro-

posed active training trajectory generation with the system considered in Sec. 4.6.1.

4.6.2.1 Simulation Setup

In this simulation study, we examine four approaches for training trajectory genera-

tion:

(M1) Baseline approach: We consider a baseline training trajectory generation ap-

proach that resembles that shown in Chapter 2. In particular, in consecutive

episodes, the DNN module is trained on sinusoidal trajectories with increasing

amplitudes and frequencies. For the results in this subsection, the amplitudes

of the sinuosoidal trajectories range from 1 to 5.5, and the frequencies range

from 0.02 Hz to 0.2 Hz.

(M2) Fisher-information-based approach: In each episode, the uncertainty of the

DNN module is estimated based on (4.5) and is used in the active trajectory

generation framework proposed in Sec. 4.5.2. The DNN module is a three-layer

feedforward network with ten hyperbolic neurons in each hidden layer.

(M3) Bagging-based approach: A committee of 20 DNNs is used to estimate the

predictive uncertainty of the DNN module in each training episode, and the

proposed active trajectory generation framework is similarly applied. The ar-

chitectures of the DNNs are identical to that used in (M2). To reduce the

computation load in the testing phase, we use a subset of five DNNs for refer-

ence computation.

(M4) Dropout-inference-based approach: A single network is trained with stochas-

tic dropout, and the uncertainty of the DNN module is estimated based on the

dropout approximate inference technique [100]. The DNN architecture is identi-

82 CHAPTER 4. ACTIVE TRAINING TRAJECTORY GENERATION

0 2 4 6 8 10
Training Episode

0

0.5

1

1.5

2

2.5

3

3.5

A
vg

. R
M

S
 T

ra
ck

in
g

E
rr

or

Sinusoidal (M1)
Fisher Information (M2)
Bagging (M3)
Dropout (M4)

Figure 4.3: The average RMS tracking errors of the DNN-enhanced systems on ten
test trajectories for an increasing number of the DNN training episodes.

cal to that used in (M2), and the proposed active training trajectory generation

approach is similarly applied.

For approaches (M2)-(M4), we use a grid search to identify informative points for

training the DNN modules. For system (4.16), the input space of the DNN module

is ξ = [x(k), yd(k + 1)]. In order for the approach to be efficient, we restrict the grid

search to a subset of the DNN input space that excludes regions with implausible

combinations of x(k) and yd(k + 1).

4.6.2.2 Simulation Results

We test the generalizability of the DNN modules trained with the different training

trajectory generation approaches on ten test trajectories. The test trajectories have

the form of yd(t) = α1 sin
(

2π
β1
t
)
− α2 cos

(
2π
β2
t
)

+ α2, and the parameters (αi, βi) are

randomly generated from uniform distributions αi ∼ U(0, 5) and βi ∼ U(5, 50) for

i = {1, 2}, where U denotes a uniform distribution. We initialize the training with a

sinusoidal trajectory yd(t) = sin
(
π
10
t
)
. Fig. 4.3 shows the average root-mean-square

(RMS) tracking error of the DNN-enhanced systems on the ten test trajectories af-

ter the algorithm in Alg. 4.3.1 is ran for an increasing number of training episodes.

From the plot, it can be seen that all the training trajectory generation approaches

are effective in the sense that the corresponding DNN-enhanced systems converge to

small RMS tracking errors. In comparison, the DNN modules trained with the active

training trajectory generation approaches (M2)-(M4) generally have faster conver-

gence as compared to the baseline sinusoidal trajectory generation approach (M1).

This means that a lower number of training trajectories is needed to learn an effective

4.7. CONCLUSIONS 83

inverse model.

It should be noted that even though, with (M1), the designed sinusoidal trajecto-

ries in the training dataset approximately cover the frequencies and amplitudes of the

test trajectories, the DNN module has relatively high generalization errors in the last

episodes. The imperfect result of (M1) is partially due to the fact that the references

corresponding to the exact inverse of the system do not necessarily lie within the de-

sired output space which the training trajectories are initially designed to cover. This

mismatch between the exact references and desired outputs makes designing training

trajectories based on strategies such as (M1) non-intuitive. The active trajectory

generation approaches circumvent this issue by incorporating the learning module in

the loop and actively identifying the uncertain references (the DNN outputs) that are

required to cover the operational space of interest.

In addition to the improved learning efficiency, it should be noted that, with the

active trajectory generation approaches, the evaluation of the utility function over

the DNN input space in each episode provides us with a means to monitor or infer

the quality of training prior to testing the DNN module on the baseline system. On

the contrary, with typical hand-designed training trajectory generation approaches,

the DNN training process is open-loop, and the quality of training may incorrectly

be assumed to be good, which is unsafe for practical applications.

4.7 Conclusions

In this chapter, we introduced an active trajectory generation framework for system-

atically training DNNs that represent inverse dynamics modules deployed to enhance

the tracking performance of black-box baseline systems. In simulation, we showed

that, by using an active trajectory generation and training approach (Fig. 4.1), we

can significantly improve the data efficiency for training the DNN inverse module.

Moreover, the proposed active training trajectory generation framework allows us to

infer the training quality of the DNN module prior to testing on the physical system,

which can be important for safe operation in practical applications.

Chapter 5

Cross-Robot Experience Transfer

to Improve the Performance of

Similar Robots

5.1 Introduction

Machine learning techniques have been applied to many robot control problems with

the goal of achieving high performance in the presence of uncertainties in the dynamics

and the environment [111]. Due to the cost associated with data collection and

training, approaches such as manifold alignment [112, 113, 114] and learning invariant

features [115, 116] have been proposed to transfer knowledge between robots and

thereby increase the efficiency of robot learning. In these approaches, datasets on a

set of sample tasks are initially collected from both robots. They are then used for

finding a mapping offline to transfer knowledge from a source robot to a target robot.

This transferred knowledge is expected to speed up the training of the target robot

and enhance its performance in untrained tasks [117].

In this chapter, we consider the problem of impromptu trajectory tracking, in

which robots are required to track arbitrary trajectories accurately from the first

attempt [48]. Model-based techniques such as model predictive control (MPC) or the

linear-quadratic regulator (LQR) can be used to solve tracking problems; however,

applying these techniques to achieve high tracking performance can be difficult as

they rely on sufficiently accurate dynamics models or can be time-consuming to tune.

In Chapter 2, we proposed a deep neural network (DNN)-based approach to enhance

the tracking performance of black-box robot control systems. In particular, we showed

84

5.2. RELATED WORK 85

DNN Offline
Learning Module

(Source System Inverse)

Plant

Online
Learning Module
(Inverse Correction)

Baseline
Controller

Target Baseline
Closed-Loop System

Desired Output Actual
Output

State

Sys.
Ref.

DNN
Ref.

Online
Module Ref.

Figure 5.1: Block diagram of the DNN-enhanced control architecture with online
learning. The DNN module represents the inverse dynamics of a source system and
is previously trained offline with a sufficiently rich dataset. During the testing phase,
the DNN module is leveraged to enhance the tracking performance of a target system
that shares some dynamic similarities with the source system. An online learning
module (trained based on small sets of real-time data) further adjusts the reference
generated by the DNN module to allow the target system to achieve high-accuracy
tracking on arbitrary trajectories from the first attempt (i.e., impromptu tracking).
A video of this work can be found here: http://tiny.cc/dnnTransfer

that we can effectively enhance the tracking performance of a robot by training a DNN

inverse dynamics module offline and then pre-cascading the module to the baseline

system at test time.

Motivated by recent work in transfer learning, in this chapter, we study the fea-

sibility of leveraging the DNN model trained on one robot to enhance the perfor-

mance of another robot in impromptu tracking tasks. In contrast to the existing

approaches, where transfer mappings are usually found offline (e.g., [113, 115]), we

propose an online learning approach (Fig. 5.1) that allows a target robot using the

DNN module from a source robot to achieve high-accuracy tracking impromptu—i.e.,

without additional data collection and training on sample tasks. With the online

learning approach, we aim to significantly reduce the data recollection and training

time usually required for enhancing the target robot performance. In this chapter,

we (1) analytically derive the form of the mapping for the online module that allows

the target system to achieve exact tracking, (2) present first results on characterizing

system similarity between source and target systems and how it relates to the stability

of the proposed overall learning system given modeling uncertainties, and (3) verify

the effectiveness of the proposed approach in simulation and impromptu trajectory

tracking experiments on quadrotors.

5.2 Related Work

The problem of knowledge transfer or transfer learning has been studied in different

application domains (e.g., natural language processing [118], computer vision [119],

http://tiny.cc/dnnTransfer

86 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

and robot control [113]). The common goal is to leverage existing data to accelerate

and improve subsequent learning processes such that the costs (and potential risks)

associated with data recollection can be reduced [120, 117]. In robotics, two directions

of knowledge transfer have been considered: (i) transfer across tasks and (ii) transfer

across robots. The former typically considers the transfer of knowledge from a source

task to a target task to be performed by a single robot (e.g., [121, 122, 123]), while the

latter considers the transfer of knowledge from a source robot to a target robot (e.g.,

[112, 113, 124, 114, 115, 116]). In this chapter, we will focus on the latter. We aim

to transfer the inverse dynamics model trained on one robot to enhance the tracking

performance of another robot. The transferred inverse dynamics model is expected

to generalize to arbitrary trajectories.

In the robot learning literature, and especially in reinforcement learning (RL),

different approaches have been proposed to address the problem of knowledge transfer

across different robots or domains. One of the approaches for cross-domain transfer is

manifold alignment, where data from the source and target systems are collected for

a set of sample tasks and are mapped to corresponding feature spaces (e.g., through

dimensionality reduction) from which a transformation mapping between the source

and target systems is found. This offline mapping can then be used to translate the

policies trained on the source robot to the policies for the target robot [112], or map

the data collected on the source robot to the target robot for model learning [113].

Extension hereto [124, 114] derive an optimal mapping for data transfer across robots

from a control theory perspective. Other related work aims to learn and exploit a

common feature space between the source and target robots while performing similar

tasks [115, 116]. In [116], it is shown that the approach can effectively transfer control

policies across different quadrotor platforms for autonomous navigation.

In addition to the above, there are a few other lines of relevant work involv-

ing knowledge transfer. One of them is sim-to-real [125, 126], where the low-cost

data from a simulation is exploited for accelerating the training on physical robots.

Moreover, in meta learning, the learning parameters are optimized for initializing

subsequent learning [127]. In [18], modularity in learning has also been proposed to

maximize the utility of learned models.

Although recent literature demonstrates the possibility of transferring knowledge

across robots, we address two additional aspects in our work. The first aspect is

impromptu knowledge transfer without a-priori data collection on target systems.

The second aspect is the impact of dynamic system similarity on the feasibility of

knowledge transfer. An open question in the transfer learning literature is the issue

5.3. PROBLEM FORMULATION 87

of negative transfer (i.e., when the transfer adversely affects the target system) [117].

While researchers have investigated task similarity in the context of task transfer

problems [128], discussions on system similarity for transferring knowledge across

robots are rare. In this chapter, we present theoretical results that associate system

similarity to the feasibility of knowledge transfer across robots.

5.3 Problem Formulation

We consider the control architecture in Fig. 5.1 and study the knowledge transfer

problem that allows the DNN module trained on a source robot system to enhance the

impromptu tracking performance of a target robot system that has different dynamics.

In this chapter, we consider closed-loop robot systems represented as

x(k + 1) = f (x(k)) + g (x(k))u(k),

y(k) = h (x(k)) ,
(5.1)

where k ∈ Z≥0 is the discrete time index, x ∈ Rn is the state of the system, u ∈ R
and y ∈ R are the input and output of the system, respectively, and f(·), g(·), and

h(·) are smooth functions. We assume that:

(A1) The source and target systems are input-to-state stable [129].

(A2) The source and target systems (i) have well-defined and the same relative de-

gree, and (ii) are minimum phase.

(A3) The desired trajectory yd is bounded, and a preview of yd(k + r) is available at

time step k.

Note that (A1) and (A2) are necessary for safe operations and for applying the DNN

inverse learning. In (A2), we also assume that the source and target systems have

the same relative degree to simplify the analysis. This condition holds, for instance,

if the two robots have similar structures but different parameters (e.g., masses and

dimensions). For (A3), the relative degree of a system is typically a small integer

bounded by the system order, and a preview of r time steps of the desired trajectory

can typically be achieved by online and offline trajectory generation algorithms.

88 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

5.4 Theoretical Results

In this section, we consider the control architecture in Fig. 5.1 and provide theoretical

results related to the knowledge transfer problem. We denote u1 as the reference from

the DNN module trained on the source system and u2 as the reference from the online

learning module. The overall reference to the target baseline system u(k) is given by

u(k) = u1(k) + u2(k). (5.2)

Below we derive an expression of u2(k) for achieving exact tracking in Sec. 5.4.1,

propose a characterization of system similarity in Sec. 5.4.2, and analyze the stability

of the overall system in the presence of uncertainties in Sec. 5.4.3.

5.4.1 Reference Adaptation for Exact Tracking

In this subsection, we derive an expression for u2(k) such that u(k) achieves exact

tracking y(k + r) = yd(k + r), where y and yd are the desired and actual outputs of

the target system, and r is the system relative degree.

A common approach for high-accuracy trajectory tracking is to adapt the reference

input of a nominal controller based on the observed tracking errors. For instance, in

PD-type iterative learning control (ILC), proportional and derivative tracking error

terms are added to the reference in each iteration to improve the tracking performance

over a sequence of trials [130]. In distal teacher inverse dynamics learning, the tracking

error is proposed as the cost function for updating the weights of a neural-network-

based controller online to achieve improved tracking [53]. In this chapter, we similarly

consider an online learning approach that adapts the reference of the DNN module

u1(k) based on the tracking error. In particular, we justify below that the reference

u2(k) can be approximated by

u2(k) = α ep(k + r), (5.3)

where α is an adaptation gain, and ep(k + r) is a prediction of the tracking error r

time steps ahead.

As shown in Chapter 2, the input and output of a nonlinear target system (5.1)

can be related as follows:

y(k + r) = Ft (x(k)) + Gt (x(k))u(k), (5.4)

5.4. THEORETICAL RESULTS 89

where Ft (x(k)) = ht ◦ f rt (x(k)) and Gt (x(k)) = ∂
∂u
ht ◦ f r−1t (ft(x(k)) + gt(x(k))u(k)),

and ft(·), gt(·), and ht(·) are the corresponding nonlinear functions in (5.1).

In addition to the target system, we consider a source system, which the DNN

module is trained on. The input-output equation of this system is similarly repre-

sented in the form of (5.4). The underlying function approximated by the DNN of

the source system is

u1(k) = G−1s
(
x(k)

)(
yd(k + r)−Fs (x(k))

)
, (5.5)

where Fs (x(k)) and Gs (x(k)) are defined analogously to those of the target system.

By substituting (5.2) and (5.5) into (5.4), one can see that the ideal reference u2(k)

for achieving exact tracking is

u2(k) = α∗e∗p(k + r), (5.6)

where α∗ = G−1t (x(k)) and

e∗p(k + r) = yd(k + r)−Ft (x(k))− Gt (x(k))u1(k). (5.7)

Remark 5.4.1 (Ideal Mapping for Exact Tracking). In order to achieve exact track-

ing, the online learning module should predict the tracking error of the target sys-

tem that would result from applying u1(k). The predicted error is scaled by a gain

α∗ = G−1t (x(k)), where Gt(x(k)) = ∂y(k+r)
∂u(k)

.

The error prediction in (5.7) depends on the current state x(k), the reference u1(k)

from the DNN module, and the future desired output yd(k+ r). When the dynamics

of the source and the target systems are not known, one may use supervised learning

to train a model online to approximate (5.7). We present a general approach for

training this online model in Remark 5.4.2.

Remark 5.4.2 (Online Learning for Error Prediction). For training an online model

to approximate (5.7), at each time step k, one may construct a dataset with paired

inputs {x(p−r), u(p−r), yd(p)} and outputs {yd(p)−y(p)} over the past N time steps

p = k − N, ..., k. The error ep(k + r) can then be predicted using the online model

with input I = {x(k), u1(k), yd(k + r)}.

Given the predicted error ep(k + r), another component to be determined for

computing u2(k) is the gain α. With an online model F (x(k), u1(k), yd(k + r)) ap-

proximating (5.7), it can be shown that α∗ can be obtained from α̂∗ = − (∂F/∂u1)
−1.

90 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

In practice, due to noise in the systems, the online estimation of α∗ can be non-trivial.

In Sec. 5.4.3, we provide an analysis to examine the stability of the overall system

when α∗ is approximated by a constant and also when the estimation of e∗p(k+ r) by

the online model is inexact.

5.4.2 System Similarity

The concept of task similarity has been introduced in the RL literature to address

the issue of negative knowledge transfer in task transfer learning problems [128].

In this subsection, we propose a characterization of system similarity for impromptu

knowledge transfer problems, where an inverse module is transferred across two robot

systems.

We consider two systems are similar if at any given state x(k), the application

of an input u(k) to the systems results in similar outputs y(k + r) [131]. For the

similarity discussion, we assume linear or linearized source and target systems to

simplify our analysis:

x(k + 1) = Ax(k) +Bu(k),

y(k) = Cx(k),
(5.8)

where x ∈ Rn is the state, u ∈ R is the input, y ∈ R is the output, and (A, B, C)

are constant matrices. It can be shown that the input and output of system (5.8) are

related by

y(k + r) = Ax(k) + Bu(k). (5.9)

where A = CAr and B = CAr−1B, and r is the relative degree of system (5.8).

From (5.9), the input-output relationship is fully characterized by A and B, which

can be thought as the state-to-output gain vector and the input-to-output gain, re-

spectively.

Based on the relationship in (5.9), we define a vector S to characterize the simi-

larity of the source and target systems:

S =
[
S1 S2

]
, (5.10)

where S1 = 1 − BtB−1s , S2 = At − BtB−1s As, and the subscripts s and t denote the

source and the target system. The terms S1 and S2, respectively, characterize the

differences in the input-to-output gain and state-to-output gain vector of the source

and target systems. Note that S = 0 if and only if At = As and Bt = Bs (i.e., the

state-to-output and input-to-output gains of the systems are identical).

5.4. THEORETICAL RESULTS 91

5.4.3 Stability in the Presence of Uncertainties

In this subsection, we use the concept of system similarity and analyze the stability

of the target system when the gain α∗ is approximated by a constant α and the

prediction of the future error e∗p(k + r) is not exact. We focus on system (5.8) and

make the following assumptions:

(A4) The output of the offline DNN u1(k) corresponds to the inverse of the source

system u1(k) = B−1s (yd(k + r)−Asx(k)), where As and Bs are the gains of the

source system, and x(k) and yd(k + r) are the state and desired output of the

target system.

(A5) The error in the prediction Λ = e∗p(k+ r)− ep(k+ r) can be bounded as follows:

Λ ≤ β1||yd(k+ r)||+β2||x(k)||+β3, where β1, β2, and β3 are positive constants,

and || · || is the Euclidean norm.

In addition, by (A1), the target system is input-to-state stable. It can be shown that

the state of system (5.8) can be bounded as follows: ||x||∞ ≤ L1||u||∞ + L2||x0||,
where ||x||∞ = supk{||x(k)||}, ||u||∞ = supk{||u(k)||}, and L1 and L2 are positive

constants.

Theorem 5.4.1 (Stability of the Target System with Transferred Inverse). Consider

a target system represented by (5.8) and the control architecture in Fig. 5.1, where

the reference of the online learning module u2(k) has the form of (5.3). Under (A1),

(A4), and (A5), the overall system is bounded-input-bounded-state (BIBS) stable if

|α| (||S2||+ β1) <
β4
L1

, (5.11)

where β4 = 1− L1 ||AsB−1s ||.

Proof. At a time step k, the output of the online learning module is u2(k) = αep(k+r),

where α is a constant gain and ep(k+r) is the predicted tracking error. The adjusted

reference u(k) sent to the target baseline system is u(k) = u1(k) + α ep(k+ r), where

u1(k) is the output of the offline DNN module. By (A4) and (A5), we can write u(k)

as

u(k) = B−1s
(
yd(k + r)−Asx(k)

)
+ α

(
e∗p(k + r)− Λ

)
. (5.12)

For a target system represented by (5.8), e∗p(k+r) in (5.7) can be written as e∗p(k+r) =

yd(k+r)−Atx(k)−Btu1(k) = yd(k+r)−Atx(k)−BtB−1s (yd(k + r)−Asx(k)). By sub-

stituting the expression of e∗p(k+ r) into (5.12), we obtain u(k) = (B−1s + αS1) yd(k+

92 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

r)− (AsB−1s + αS2)x(k)− αΛ. Moreover, by (A1) and (A5), we can relate ||x||∞ to

||yd||∞ = supk{||yd(k)||} by the following inequality:

||x||∞ ≤ L1

((∣∣B−1s ∣∣+ |α| |S1|+ β1|α|
)
||yd||∞

+
(∣∣∣∣AsB−1s ∣∣∣∣+ |α| ||S2||+ β2|α|

)
||x||∞

)
+ L1β3|α|+ L2||x0||.

(5.13)

From (5.13), if 1 − L1 (||AsB−1s ||+ |α| ||S2||+ β2|α|) > 0, or equivalently

|α| (||S2||+ β2) <
β4
L1

, then the state of the system can be bounded as follows:

||x||∞ ≤
L1 (|B−1s |+ |α| |S1|+ β1|α|) ||yd||∞ + L1β3|α|+ L2||x0||

1− L1 (||AsB−1s ||+ |α| ||S2||+ β2|α|)
. (5.14)

Now, if yd and hence ||yd||∞ are bounded, then the system state is bounded, and the

overall system is BIBS stable. �

Recall that, in (5.11), α is the gain of the online learning module, S2 characterizes

the similarity between the two systems, β1 is associated with the uncertainty in the

error prediction, and L1 can be thought of as a characterization of the aggressiveness

of the target system. The condition in (5.11) can be interpreted for two scenarios: (i)

when |α| = 0 (i.e., the online module is inactive) and (ii) when |α| 6= 0 (i.e., the online

module is active). In scenario (i), the condition in (5.11) reduces to L1 <
1

||AsB−1
s || ,

which can be interpreted as an upper bound on the relative aggressiveness of the

source and target systems. When this condition is satisfied, the target system with

the source system DNN module is stable. In scenario (ii), when the online learning

module is active, the condition in (5.11) implies that if the source and target systems

are more similar, that is ||S2|| is closer to 0, then there will be a greater margin

for selecting α and higher tolerance for having uncertainties in the online prediction

model. Moreover, based on the condition in (5.11), one may use probabilistic learning

techniques to estimate the uncertainties in the predicted error ep(k+ r) and calculate

an upper bound on the magnitude of the fixed gain α for stability.

Remark 5.4.3 (Nonlinear Systems). For nonlinear systems (5.1) with inputs and

outputs related by (5.4), one can relate the outputs of the source and target systems

by yt(k+r) = ϑ1 (x(k)) ys(k+r)+ϑ2 (x(k)), where ϑ1 (x(k)) = Gt (x(k))G−1s (x(k)) and

ϑ2 (x(k)) = Ft (x(k))− Gt (x(k))G−1s (x(k))Fs (x(k)). The relation between yt(k + r)

and ys(k + r) can be used for characterizing the similarity for the nonlinear systems.

5.5. SIMULATION RESULTS 93

5.5 Simulation Results

In this section, we illustrate the proposed online learning approach with a simulation

example. In Chapter 2, we considered a minimum phase closed-loop baseline system

represented by

x(k + 1) =

[
0 1

−0.15 0.8

]
x(k) +

[
0

1

]
u(k),

y(k) =
[
−0.2 1

]
x(k),

(5.15)

and showed that a DNN module can be designed to enable the system to achieve exact

tracking on untrained trajectories. In the following simulation study, we consider

system (5.15) as the source system and leverage its offline DNN module to enhance

the tracking performance of a target system that is represented by

x(k + 1) =

[
0 1

−0.24 1

]
x(k) +

[
0

1

]
u(k),

y(k) =
[
−0.1 1

]
x(k).

(5.16)

Note that the source system (5.15) and the target system (5.16) are minimum phase

and have relative degrees of 1. The source system has two poles at {0.3, 0.5} and a

zero at 0.2, while the target system has two poles at {0.4, 0.6} and a zero at 0.1. When

implementing the learning modules, we assume that the systems are black boxes, and

we rely on only their input-output data and basic properties (e.g., relative degree).

5.5.1 Simulation Setup

In the proposed control architecture (Fig. 5.1), there are two learning modules placed

in parallel to enhance the tracking performance of the target system: (i) an offline

learning module that represents the inverse dynamics of the source system, and (ii)

an online learning module that further adjusts the reference signals by predicting the

future tracking error of the target system. The details the offline and online learning

modules are discussed respectively in the following subsections.

5.5.1.1 Offline Learning of Inverse Module

The offline inverse module is trained on a source system (e.g., a system that is similar

to the target system or a simulator), from which abundant data has been collected.

The collected data can often be compactly represented by parametric regression tech-

94 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

niques. For the source system (5.15), we train the DNN module as outlined in Chap-

ter 2 and transfer this inverse module to enhance the target system (5.16) with the

proposed online learning approach. The DNN module of the source system is a 3-layer

feedforward network with 20 hyperbolic tangent neurons in each hidden layer. The

input and output of the DNN module are I = {x(k), yd(k+1)} and O = {u1(k)}. The

training dataset is constructed from the source system’s response on 25 sinusoidal tra-

jectories with different combinations of frequencies and amplitudes; Matlab’s Neural

Network Toolbox is used to train the DNN model parameters offline.

5.5.1.2 Error Prediction with Online Learning

The online error prediction module is a local model trained on a small dataset con-

structed from the latest observations of the target system. The objective of incor-

porating the online module is to achieve fast adaptation to the dynamic differences

between the source and target systems. In the simulation, a Gaussian process (GP)

regression model is utilized for learning the error prediction module online. Based

on Remark 5.4.2, the input and output of the online module are selected to be

I = {x(k), u1(k), yd(k + 1)} and O = {ep(k + 1)}, respectively. At each time step k,

a fixed-sized training dataset is constructed based on the latest 15 observations; in

particular, the input and output are {(x(p−1), u(p−1), yd(p))} and {yd(p)−y(p)} for

p = k−15, ..., k. For the simulation, the GP model uses the squared-exponential kernel

K(ξ, ξ′) = σ2
1 exp

(
−1

2

∑
i
(ξi−ξ′i)2

l2i

)
and polynomial explicit basis functions {1, ξi, ξ2i },

where ξ denotes the input to the module and ξi denotes the i-th component of ξ, li

is the length scale associated with the input dimension ξi, and σ2
1 is the prior vari-

ance [132]. The length scales li are identical for all input dimensions in the simulation;

the hyperparameters of the kernel function and the coefficients of the basis functions

are optimized online with Matlab’s Gaussian Process Regression toolbox. The gain

α∗ is estimated based on the online error prediction module as α̂∗ = − (∂Fgpr/∂u1)
−1,

where Fgpr denotes the function represented by the GP regression model.

5.5.2 Results

Figures 5.2 and 5.3 show the performance of the learning modules and the target

system on a test trajectory yd(t) = sin
(
2π
8
t
)

+ cos
(
2π
16
t
)
− 1, where t = 1.5 × 10−3k

is the continuous-time variable. This test trajectory is not previously used in the

training of the offline learning module.

Figure 5.2 compares the predicted error from the online module and the analytical

5.6. QUADROTOR EXPERIMENTS 95

error prediction of the target system computed based (5.7). It can be seen that the

online module designed based on Remark 5.4.2 is able to accurately predict the error

of the target system that would result from applying the reference u1 alone. On the

test trajectory, the root-mean-square (RMS) error of the online module prediction is

approximately 2.9× 10−7.

Figure 5.3 shows the outputs of the target system when (i) the baseline controller

is applied (grey), (ii) the baseline system is enhanced by the offline module alone

(green), and (iii) the baseline system is enhanced by both the online and the offline

modules (blue). As compared to the baseline system, the offline module alone reduces

the RMS tracking error of the target system from 3.97 to 0.44. The online module

further reduces the RMS tracking error to 9 × 10−5. Applying the offline and the

online learning modules jointly allows the target system to achieve approximately

exact tracking on a test trajectory that is not seen by the source or the target system

a-priori.

5.6 Quadrotor Experiments

With impromptu tracking of hand-drawn trajectories as the benchmark problem [48],

we illustrate the proposed online learning approach for transferring the DNN mod-

ule trained on a source quadrotor system, the Parrot ARDrone 2.0, to a tar-

get quadrotor system, the Parrot Bebop 2. A demo video can be found here:

http://tiny.cc/dnnTransfer

5.6.1 Experiment Setup

In Chapter 2, with the ARDrone as the testing platform, it is shown that a DNN

module trained offline can effectively enhance the impromptu tracking performance

of the quadrotor on arbitrary hand-drawn trajectories. In this chapter, we lever-

age the DNN module trained on the ARDrone to enhance the impromptu tracking

performance of the Bebop and further apply the proposed online learning approach

(Remark 5.4.2) to achieve high-accuracy tracking.

5.6.1.1 Control Objective and Baseline Control System

The dynamics of a quadrotor vehicle can be characterized by 12 states: translational

positions p = (x, y, z), translational velocities v = (ẋ, ẏ, ż), roll-pitch-yaw angles

θ = (φ, θ, ψ), and rotational velocities ω = (p, q, r). The objective is to design a

http://tiny.cc/dnnTransfer

96 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

0 5 10 15 20 25 30
Time

-0.5

 0.0

 0.5

Pr
ed

ic
te

d
Er

ro
r

Exact Error Prediction
Online Learning Module Prediction (RMS Error = 2.9e-07)

Figure 5.2: A plot of the error prediction from the online learning module. The error
predicted by an online module trained based on Remark 5.4.2 (blue) coincides with
the exact error prediction computed based on 5.7 (red).

control system such that the position of the quadrotor pa tracks desired trajectories

pd generated from arbitrary hand drawings. In our work, we use the RMS error as

the measure for evaluating tracking performance.

The baseline control systems of the quadrotor platforms, the ARDrone and the

Bebop, have an offboard position controller running at 70 Hz and an onboard at-

titude controller running at 200 Hz. The offboard position controller receives the

reference position pr and reference velocity vr, and computes attitude commands

φcmd and θcmd, yaw rate command rcmd, and z-velocity command żcmd. The onboard

attitude controller receives the commands from the offboard controller, and computes

the desired thrusts of the four motors of the vehicle. In the experiments, we apply

the offline and online learning modules to enhance the tracking performance of the

baseline controller of the Bebop (the target system). In the design of the learning

modules, we assume that the high-level dynamics of the ARDrone and the Bebop are

decoupled in the x, y, and z directions.

5.6.1.2 DNN Module Trained on ARDrone (Source System)

In Chapter 2, a DNN module is trained offline to approximate the inverse of the

ARDrone baseline system dynamics. Based on the theoretical insights in Chapter 2,

the input and output of the DNN module are determined to be I1 = {xd(k + 4) −
xa(k), yd(k + 4)− ya(k), zd(k + 3)− zd(k), ẋd(k + 3)− ẋa(k), ẏd(k + 3)− ẏa(k), żd(k +

2)− ża(k),θa(k),ωa(k)} and O1 = {pr(k)−pa(k),vr(k)−va(k)}. The DNN module

consists of fully-connected feedforward networks with 4 hidden layers of 128 rectified

linear units (ReLU). The training dataset of the DNN module is constructed from

the ARDrone baseline system response on a 400-second, 3-dimensional sinusoidal

trajectory. At a sampling rate of 7 Hz, approximately 2,800 pairs of data points are

collected for training. The DNN module is implemented using Tensorflow in Python.

5.6. QUADROTOR EXPERIMENTS 97

0 5 10 15 20 25 30

Time

-15.0

-10.0

 -5.0

 0.0

T
a
rg

e
t
S

y
s
te

m
 O

u
tp

u
t

Desired

Target System Baseline (RMS Error = 3.97)

w/ DNN of Source System (RMS Error = 0.44)

w/ DNN of Source System and Online Module (RMS Error = 9e-05)

Figure 5.3: Plots of the target system output when (i) the baseline controller (grey),
(ii) the baseline controller with the offline learning module (green), and (iii) the
baseline controller with both the offline and online learning modules (blue) are ap-
plied. Due to system similarity, the offline learning module (trained on the source
system) significantly reduces the tracking error of the target system. With the further
incorporation of the online learning module, exact tracking is approximately achieved.

As shown in Sec. 2.6, for 30 hand-drawn test trajectories, this offline DNN module

is able to reduce the impromptu tracking error of the ARDrone baseline system by

62% on average.

5.6.1.3 Online Learning for Bebop (Target System)

Based on Remark 5.4.2, the input and output of the online learning module are

I2 = {pa(k),va(k),θa(k),ωa(k),pr(k),vr(k), xd(k + 4), yd(k + 4), zd(k + 3), ẋd(k +

3), ẏd(k + 3), żd(k + 2)} and O2 = {xe(k + 4), ye(k + 4), ze(k + 3), ẋe(k + 3), ẏe(k +

3), że(k+2)}, where (·)e denotes the predicted position and velocity tracking errors of

the Bebop system when the offline DNN trained on the ARDrone system is used. In

the experiment, in order to make online learning more efficient, instead of predicting

the position and velocity errors directly, we train a GP model to predict the position

of the Bebop pa(k+ r) = [xa(k+ 4), ya(k+ 4), za(k+ 3)] and computes the predicted

error by subtracting the predicted position from future desired position pd(k + r) −
pa(k + r), where pd(k + r) = [xd(k + 4), yd(k + 4), zd(k + 3)]. The predicted position

errors are used to compute the corrections for the position components; the velocity

reference corrections are numerically approximated with a first-order finite difference

scheme. For the experiments, the online learning module is implemented by using the

GPy library in Python. We use a standard squared-exponential kernel with a fixed

length scale l for all input dimensions, prior variance σ2
1, and zero mean Gaussian

measurement noise with variance σ2
2 [132]. At each time step k, the most recent 40

98 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

x (m)

0.5

1

1.5

2

z
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

(a) Path of the target system in the x-z plane.

-2.0

 0.0

 2.0

x
 (

m
)

Desired

Bebop Baseline System

w/ DNN

w/ DNN & Online Module

0 2 4 6 8 10 12 14 16 18

Time (s)

0.5

1.0

1.5

2.0

z
 (

m
)

(b) Position trajectories of the target system.

Figure 5.4: Comparison of three control strategies for the Bebop target system: The
RMS error is 0.42 m for the Bebop baseline system (grey), 0.26 m for the baseline
system enhanced by the ARDrone DNN (green), and 0.14 m for the baseline system
further enhanced by the online learning module (blue).

observations are used for constructing the training dataset. The hyperparameters of

the GP model are l = 20, σ2
1 = 1, and σ2

2 = 2×10−5; these values are manually tuned

a-priori for our experimental setup. If computational resources permit, we expect

finer tuning of the hyperparameters online would lead to lower generalization errors

and better tracking performance. Due to the measurement noise in the experiment,

instead of estimating the parameter α online, we used constant gains α = (5, 5, 0.5)

for the x, y, and z directions.

5.6.2 Results

Figure 5.4 compares the tracking performance of three control strategies on the Bebop

on one of the test hand-drawn trajectories. When comparing the performance of

the Bebop system enhanced by the ARDrone DNN (green) and the performance

of the Bebop baseline system (grey), the ARDrone DNN reduces the delay and the

5.6. QUADROTOR EXPERIMENTS 99

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

1 2 3 4 5 6 7 8 9 10

RM
S

Er
ro

r (
m

)

Trajectory Number

Bebop Baseline Bebop w/ ARDrone DNN Bebop w/ ARDrone DNN & Online Learning ARDrone w/ Own DNN Bebop w/ Own DNN
Avg. RMS Error = 0.54 m Avg. RMS Error = 0.29 m Avg. RMS Error = 0.13 m Avg. RMS Error = 0.14 m Avg. RMS Error = 0.15 m

Figure 5.5: Tracking performance of the target system (Bebop) on 10 hand-drawn
trajectories. The ARDrone DNN module alone (green) and the ARDrone DNN mod-
ule with the online learning module (blue) reduce the tracking error of the Bebop
baseline system (grey) by 46% and 74% on average, respectively. With the proposed
online learning approach, the average RMS error of the Bebop (blue) is comparable
to cases where the ARDrone and the Bebop are enhanced by their own offline DNN
modules (yellow and light blue).

amplitude errors in the Bebop tracking response. Along this particular trajectory, the

DNN module alone reduces the RMS tracking error of the Bebop from approximately

0.42 m to 0.26 m. When further comparing with the performance of the DNN-

enhanced system with the addition of the online learning module (blue), the tracking

of the Bebop, especially in the x-direction, is brought close to the desired trajectory.

With the online learning module, the RMS tracking error is reduced to approximately

0.14 m. Note that, from the plots in Fig. 5.4, when the online learning module is

applied, there are small overshoots at the locations with larger curvatures. The

overshoots may be reduced with online tuning of the GP hyperparameters and online

estimations of the α parameters.

Figure 5.5 summarizes the performance errors of the three control strategies on

10 hand-drawn trajectories. When compared with the Bebop baseline system perfor-

mance (grey), the direct application of the transferred DNN module (green) reduces

the RMS tracking error of the Bebop baseline system by an average of 46%. With

the addition of the online learning module (blue), an average of 74% RMS tracking

error reduction is achieved. Two additional sets of results are included for compari-

son: (i) the performance of the ARDrone enhanced by the DNN module trained on

the ARDrone system (yellow) and (ii) the performance of the Bebop enhanced by a

DNN module trained on the Bebop system (light blue). Without requiring further

data collection and offline training, the inclusion of the online learning module effec-

tively reduces the RMS tracking error of the Bebop to values that are comparable

to those of the cases where the quadrotors are enhanced by their own offline DNN

modules. These results demonstrate the efficiency of the proposed online learning

100 CHAPTER 5. CROSS-ROBOT EXPERIENCE TRANSFER

module to leverage past experience and reduce data re-collection and training.

5.7 Conclusions

In this chapter, we consider the impromptu tracking problem and propose an online

learning approach to efficiently transfer a DNN module trained on a source robot

system to a target robot system. In the theoretical analysis, we derive an expression

of the online module for achieving exact tracking. Then, based on a linear system

formulation, we propose an approach for characterizing system similarity and provide

insights on the impact of the system similarity on the stability of the overall system

in the knowledge transfer problem.

We verify our approach experimentally by applying the proposed online learning

approach to transfer a DNN inverse dynamics module across two quadrotor platforms

(Parrot ARDrone and Bebop). On 10 arbitrary hand-drawn trajectories, the DNN

module of the source system reduces the tracking error of the target system by an

average of 46%. The incorporation of the online module further reduces the tracking

error and leads to an average of 74% error reduction. These experimental results

show that the proposed online learning and knowledge transfer approach can effi-

caciously circumvent data recollection on the target robot, and thus, the costs and

risks associated with training new robots to achieve higher performance in impromptu

tasks.

Chapter 6

Lipschitz Network Adaptation to

Bridge the Model-Reality Gap

6.1 Introduction

Advances in hardware and algorithms have enabled robots to enter more complex

environments and perform increasingly versatile tasks such as home and healthcare

services, search and rescue, aerial package delivery, and industrial inspections. In

these applications, robots need to cope with unmodeled dynamics, external time-

varying disturbances, and other adverse factors such as communication latency. These

practical issues pose challenges to the design of controllers using standard model-based

techniques.

In the literature, common model-based control techniques include, but are not

limited to, model predictive control (MPC) and linear quadratic regulators (LQR).

These approaches are effective when the dynamics model of the robot system is suf-

ficiently accurate and the operating environment does not change significantly over

time. When these conditions are not met, model-based designs can lead to subop-

timal or unsafe behaviour [3]. While there exist robust approaches that account for

uncertainties by considering worst-case scenarios, these robust techniques can be often

overly conservative [133, Ch. 17].

An alternative approach to cope with dynamics uncertainty is to enable the system

to adapt. One particular set of adaptive approaches is model reference adaptive con-

trol (MRAC), which aims to make the controlled system behave similarly to a desired

reference model despite unknown disturbances [134]. Although classical adaptive

control approaches techniques provide stability guarantees, they usually assume a

101

102 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

Model-Based
Controller or

Planner

Learning-Based
Reference
Adaptation

Robot
Dynamics

System
Output

Input
Command

Adjusted
Input Cmd.

System State

Desired
Behaviour

(a) High-level block diagram

Input
Cmd.

Adjusted
Input Cmd.

System
Output

System
State

Reference
Model Ref. Model

Output

Reference
Model State

-

Lipschitz
Network

(Online Learned)

Robot
Dynamics

LipNet-MRAC: Learning-Based Model Reference Adaptation

(b) Detailed block diagram of the model reference adapta-
tion module

Figure 6.1: Block diagrams of the proposed approach. The grey box represents the
robot system equipped with the proposed learning-based model reference adaptation
module (green box). The reference sent to the robot system is adapted online by a
Lipschitz network (blue box) such that the response from the input u to the output
ya resembles the response of a reference model, which can be used in the outer model-
based controller or planner. A video of the flying inverted pendulum experimental
results can be found here: http://tiny.cc/lipnet-pendulum

particular system structure that limit the range of robotic applications to which they

can be applied [134].

Inspired by recent advances in machine learning techniques, we propose a novel

learning-based MRAC approach that bridges the model-reality gap and enables us to

leverage the power and simplicity of model-based control techniques, even in dynamic

and uncertain conditions. In particular, we consider the hierarchical architecture

illustrated in Fig. 6.1, where a low-level adaptive module (green box) modifies the

input to the system such that the system’s input-output response resembles that of the

reference model and a high-level controller is designed based on the reference model

to achieve a desired robot behaviour. In contrast to existing MRAC approaches

such as [134, 135, 136], we leverage the expressive power of deep neural networks

(DNNs) to capture a broader range of unmodelled dynamics and guarantee stability

by exploiting the Lipschitz property of a special type of DNN called Lipschitz network

http://tiny.cc/lipnet-pendulum

6.2. RELATED WORK 103

(LipNet) [19]. In this chapter, we (1) present a Lipschitz network adaptive control

approach that makes a nonlinear robot system, with possibly unknown dynamics,

behave as a reference model, (2) derive a condition that guarantees stability of the

proposed approach by exploiting the Lipschitz properties of the LipNet module, and

(3) experimentally demonstrate the efficacy of the proposed approach for bridging

the model-reality gap by balancing an inverted pendulum on a quadrotor platform

despite dynamics uncertainties.

6.2 Related Work

The rich literature on model-based control approaches shows the effectiveness, safety,

and simplicity of these techniques for cases when the dynamics model of system is

accurate and the operating environment is static. The model-reality gap is a crucial

factor that prevents traditional model-based approaches to be directly applicable to

robot systems that are subject to uncertain dynamics and disturbances. One can

think of three approaches to address the model-reality gap [3]: (i) robustness, (ii)

adaptation, and (iii) anticipation.

The robustness approach aims to design control laws that are stable for a range

of unknown dynamics and disturbances that may affect the robotic system. Robust

control approaches include, but are not limited to, sliding-mode control [137], robust

MPC [138], H∞ control [139], as well as more recent domain randomization tech-

niques for sim-to-real transfer [126]. While robust approaches typically guarantee

stability and safety in the presence of unmodelled dynamics and disturbances, their

performance can be conservative.

In contrast, adaptation approaches address the model-reality gap by adapting

or learning online using data collected by the robot. Adaptive controllers such as

MRAC [134] and L1 adaptive control [140] are fast and able to handle unmodelled

dynamics. In order to further improve performance, learning-based controllers that

leverage past experience are being proposed. Non-parametric approaches include

learning-based controllers using Gaussian Processes (GPs) [141], which leverage past

experience to learn a better system model, but can be computationally expensive

resulting in a slow response to changes in the environment. While there are newer

learning MPC approaches using Bayesian linear regression (BLR) [142], formal guar-

antees are not given.

Anticipation approaches address the model-reality gap by learning offline. In

DNN-based inverse control, a mapping from desired output to actual output is learned

104 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

offline and used to improve tracking performance of a quadrotor. In reinforcement

learning (RL), latent variables that represent the environment are used to anticipate

changes in the environment for off-policy RL [143]. While anticipation approaches are

effective for addressing the uncertainties for a broad range of systems, they typically

lack the adaptivity to cope with changes during real-time execution.

Adaptive controllers handle unmodelled dynamics and disturbances without the

need for conservative control laws or significant amounts of past experience to learn

offline. Due to their expensiveness and fixed cost for online inference, neural networks

(NNs) are emerging as attractive options for implementing adaptive frameworks on

resource-constrained robot platforms. Neural networks have previously been used

in online inverse control, but they suffered from a lack of robustness against distur-

bances [53] and the need for appropriate initialization in order to converge [55]. They

have also been used to relax the assumptions of conventional MRAC (e.g., [144]).

However, earlier studies often use radial basis function (RBF) NNs, which require a

sufficient preallocation of basis functions over the operating domain; the desired the-

oretical guarantees do not hold outside of the targeted operating domain. Recently,

an asynchronous DNN MRAC framework was proposed to mitigate the limitation of

RBF NNs by learning “features” at a slower timescale [145]; but, the approach only

considers systems with additive input uncertainties.

In this chapter, we consider a more general class of control-affine nonlinear systems

and leverage the expressiveness of DNNs to learn complex dynamic uncertainties. The

stability of the adapted system is guaranteed by exploiting the Lipschitz properties

of the Lipschitz network. We demonstrate our approach in flying inverted pendulum

experiments.

6.3 Problem Formulation

We consider robot systems whose dynamics can be represented in the following form:

xa(k + 1) = fa(xa(k)) + ga(xa(k)) ua(k),

ya(k) = ha(xa(k)),
(6.1)

where the subscript a denotes the actual robot system, k ∈ Z≥0 is the discrete-time

index, xa ∈ Rn is the system state, ua ∈ R is the system input, ya ∈ R is the system

output, and fa, ga, and ha are smooth nonlinear functions that are possibly unknown

a priori. Our goal is to design a learning-based control law such that the robot

behaves as a reference model, which can subsequently be leveraged when designing

6.3. PROBLEM FORMULATION 105

the outer-loop controller or planner.

The reference model can have the following form:

xm(k + 1) = fm(xm(k)) + gm(xm(k)) um(k),

ym(k) = hm(xm(k)),
(6.2)

where the subscript m denotes the reference model, the reference model state xm,

input um, and output ym are defined analogously as in (6.1), and fm, gm, and hm

are smooth nonlinear functions. Note that the reference model has a generic control-

affine form. Practically, one could use a nonlinear reference model that best captures

our prior knowledge about the robot system. Alternatively, to simplify the outer-loop

controller design, one may choose a linear reference model

xm(k + 1) = Amxm(k) +Bmum(k),

ym(k) = Cmxm(k),
(6.3)

where (Am, Bm, Cm) are constant matrices with consistent dimensions, and use well-

established linear control tools.

We consider a control architecture as shown in Fig. 6.1b. Without loss of gener-

ality, we assume that the inputs to the robot system and the reference model are

ua(k) = u(k) + δu(k) and um(k) = u(k), (6.4)

where u(k) is the input command computed by the outer-loop model-based controller.

The objective of model reference adaptation is to learn the input adjustment δu(k)

such that the output of the robot system (6.1), ya(k), tracks the output of the reference

system (6.2), ym(k).

We make the following assumptions: (i) the dynamics of the robot system is

minimum phase (i.e., has stable forward and inverse dynamics) and has a well-defined

relative degree, and (ii) the reference model is stable and has the same relative degree

as the robot system. As discussed in Chapter 2, the first assumption is necessary

to safely apply an inverse dynamics learning approach and is satisfied by closed-

loop stabilized robot systems such as quadrotors and manipulators. The second

assumption is also not restrictive, as the relative degree of a robot system can be

estimated from experiments or inferred from our prior knowledge, and the reference

model can be designed to satisfy this assumption.

Note that the choice of reference model is generally problem-dependent. For

106 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

instance, it can be chosen to achieve the desired transient or steady-state response or

maximize the stability margin of the system. There is usually a tradeoff in selecting a

reference model. Choosing a fast reference model could potentially favour the design

of the outer-loop controller, while choosing a slower reference model would make the

adaptation task easier. In practice, one should choose a sufficiently fast reference

model to fulfill the desired higher-level objective and ensure that the reference model

is feasible for the robot to follow.

6.4 Methodology

In this section, we present our proposed LipNet-based MRAC (LipNet-MRAC) ap-

proach to enforce a robot to behave as a predefined reference model. To facilitate

our discussion, in Sec. 6.4.1, we present a brief background on the LipNet [19]. In

Sec. 6.4.2, we derive an ideal model reference adaptation law based on the dynamics

model of the robot system. In Sec. 6.4.3, we introduce an online algorithm to learn

the model reference adaptation law with a LipNet when the robot dynamics are un-

known, and in Sec. 6.4.4, we derive a Lispchitz condition that guarantees stability of

the proposed LipNet-MRAC approach.

6.4.1 Background on Lipschitz Networks

In contrast to conventional feedforward networks whose Lipschitz constants are often

difficult to estimate [65], LipNets have exact, predefined Lipschitz constants that the

designer can choose freely [19]. Setting and knowing the Lipschitz constant is critical

for guaranteeing stability of NN-based control frameworks [16, 146].

We consider an M -layer neural network Fθ(ξ) that can be expressed as follows:

Fθ(ξ) = WMσ(WM−1σ(. . . σ(W 1ξ + b1)) + bM−1) + bM , (6.5)

where ξ is the input of the network, {W 1,W 2, ...,WM} are the weights matrices,

{b1, b2, ..., bM} are the bias vectors, θ denotes an augmented vector of the network

weight and bias parameters, and σ(·) is the activation function.

In contrast to conventional networks, LipNets enforce exact Lispchitz constraints

by ensuring that the input-output gradient norm is preserved by each linear and

activation layer: ||JTl zl|| = ||zl||, where zl and Jl are the input and the input-output

Jacobian of layer l, and ||·|| is the Euclidean norm of a vector. To realize gradient norm

preservation, [19] proposes to (i) orthonormalize the weight matrices in each linear

6.4. METHODOLOGY 107

layer such that the weight matrices have singular values of 1 exactly, and (ii) use a

gradient-preserving activation function GroupSort that sorts the input to the hidden

layer. More specifically, the GroupSort activation function divides the input to the

hidden layer into groups and sorts the values of each group in ascending or descending

order. As an example, with full sort, we have [1, 2, 3, 4]T = GroupSort([3, 2, 4, 1]T).

Since the GroupSort activation function only permutates the inputs to the layer,

the input-output gradient norm of the GroupSort layer is 1. By design, the overall

network has a Lipschitz constant of 1. The 1-Lipschitz network can be extended to

approximate a function with an arbitrary Lipschitz constant by scaling the output of

the network by the desired Lipschitz constant [19]. In contrast to spectral normaliza-

tion approaches, where the weight matrices of the network are scaled by their spectral

norms, LipNets have exact Lipschitz constants, which reduces the conservatism for

imposing Lipschitz constraints.

6.4.2 Model Reference Adaptation Law

In this subsection, using the representations of the robot system (6.1) and the refer-

ence model (6.2), we derive the model reference adaptive law to be approximated by

the LipNet.

To facilitate our discussion, we introduce the notion of system relative degree. We

define fa ◦ ga as the composition fa(ga(·)) of the functions fa and ga, and f ia as the

ith composition of the function fa with f 0
a (x) = fa(x) and f ia(x) = f i−1a (x) ◦ fa(x).

As discussed in Chapter 2, a nonlinear system (6.1) is said to have a relative degree

of r, if r is the smallest integer such that ∂
∂ua

ha ◦ f r−1a (fa(x) + ga(x)ua(x)) 6= 0 in a

neighbourhood of an operating point (x̄a, ūa). Intuitively, for a discrete-time system,

the relative degree r defines the number of sample delays between applying an input

ua to the system and seeing a corresponding change in the output ya.

By leveraging the definition of relative degree, we can relate the input ua and

output ya of the robot system (6.1):

ya(k + r) = Fa(xa(k)) + Ga(xa(k)) ua(k), (6.6)

where Fa(xa(k)) = ha ◦ f ra(xa(k)) and Ga(xa(k)) = ∂
∂ua

ha ◦ f r−1a (fa(xa(k)) +

ga(xa(k))ua(k)). This input-output relationship allows us to predict the future output

of the robot system ya(k + r) based on the current input ua(k) and state xa(k).

By assuming that the reference model is designed to have the same relative de-

108 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

gree r, we can similarly derive the input-output equation of the reference system:

ym(k + r) = Fm(xm(k)) + Gm(xm(k)) um(k), (6.7)

where Fm(xm(k)) and Gm(xm(k)) are defined analogously to Fa(xa(k)) and Ga(xa(k))

for (6.1). For a linear reference system (6.3), the input-output equation reduces to

ym(k + r) = Amxm(k) + Bmum(k), (6.8)

where Am = CmA
r
m and Bm = CmA

r−1
m Bm.

Recall the architecture in Fig. 6.1, where the inputs to the robot system and the

reference model are defined by (6.4). In order to make the robot system behave like

the reference model, we enforce the outputs of the robot system and the reference

model to be identical. In particular, by setting ya(k + r) = ym(k + r) and solving

for δu(k), one can show that the ideal input adjustment δu(k) for model reference

adaptation is

δu(k) = G−1a (xa(k))
(
Fm(xm(k))−Fa(xa(k)) + Gm(xm(k)) u(k)

)
− u(k). (6.9)

When the robot dynamics is unknown, we can treat the ideal adjustment (6.9)

as a nonlinear function that maps from the robot system state xa(k), the reference

model state xm(k), and the input signal u(k) to the input adjustment δu(k):

δu(k) = Fθ(xa(k), xm(k), u(k)). (6.10)

6.4.3 Online Learning of the Model Reference Adaptation

Law

In this subsection, we outline an online learning algorithm to discover the ideal adap-

tation law (6.9) via a Lipschitz network when the robot dynamics (6.1) is not known.

We define the performance error of the neural network as the difference between

the output of the robot system (6.1) and the output of the reference model (6.2):

E(k) = ym(k + r) − ya(k + r). At each time step k, the parameters of the Lipschitz

network are updated to minimize the squared error cost function:

J (k) =
1

2
E2(k) =

1

2
(ym(k + r)− ya(k + r))2 . (6.11)

We use the following gradient-based approach to update the network parameters,

6.4. METHODOLOGY 109

θ(k + 1) = θ(k) + ∆θ(k). The change in the network parameters is:

∆θ(k) = −λ∇θJ (k) = λH(k)G(k)E(k), (6.12)

where λ > 0 is the learning rate, G(k) = ∇θFθ(xa(k), xm(k), um(k)) is the gradient of

the network output with respect to its parameters, and H(k) = ∇uaya(k + r) is the

input-output gradient of the robot system.

To realize the online adaptation law (6.12), we need to predict the system output

ya(k+r) and estimate the input-to-output gradient ∇uaya(k+r). Similar to [53, 147],

we can simultaneously learn a forward model for the robot system to estimate ya(k+r)

and ∇uaya(k + r) (see (6.6)):

Remark 6.4.1 (Forward Model Learning). At time k, one can construct a paired

dataset with inputs {ya(p − r), ua(p − r)} and outputs {ya(p)} based on the latest N

time steps p = {k−N, ..., k} and use standard supervised learning to train a forward

model (e.g., a BLR model) as a local approximator of (6.6). The model can be then

used to estimate ya(k + r) and ∇uaya(k + r) by setting the input to (xa(k), ua(k)).

We note that inaccuracies in the forward dynamics model could, in general, lower

the adaptation performance but will not jeopardize the stability of the adapted sys-

tem. As will be shown in Sec. 6.4.4, the stability of the proposed LipNet-MRAC

approach is guaranteed if the Lipschitz constant of the LipNet satisfies a small-gain-

type condition.

In the case where a prediction model is not available, one could still apply the

proposed algorithm for model reference adaptation but with a sample delay of r steps,

which is typically a small integer for robot systems such as quadrotors. For a linear

system, ∇uaya(k + r) is a constant that can be factored into the learning rate λ as a

tuning parameter, and its estimation is not required.

6.4.4 Stability Analysis

In this subsection, we provide stability guarantees of the system including the model

reference adaptation law by exploiting the Lipschitz property of the learning module.

In the stability analysis, we make the following assumptions:

(A1) The state of the robot system can be bounded by ||xa||l ≤ γ||ua||l + β, where

γ and β are positive constant scalars, || · ||l denotes the l2 signal norm, and the

variables without the time indices (k) denote the corresponding signals.

110 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

(A2) The input adjustment computed by the adaptation module satisfies δu(k) = 0

for (xa(k), xm(k), u(k)) = (0, 0, 0).

(A3) The state of the reference system xm is bounded (i.e., ||xm||l <∞).

Assumption (A1) holds for finite-gain l2 stable systems and is common assumption

in small-gain-type theorems, which are the basis of the proof presented below. The

scalar γ is an upper bound on the input-to-state gain of the robot system, and the

scalar β is a constant value associated with the initial state of the robot system. As

shown in the proof below, β affects the upper bound on the state of the system but

does not impact the stability of the adapted system. Assumption (A2) is true for any

robot and reference systems satisfying Fa(0) = 0 and Fm(0) = 0. This condition is

not restrictive and can be practically enforced by removing the bias vectors from the

LipNet architecture. Assumption (A3) can be satisfied by a proper choice of stable

reference system.

Theorem 6.4.1 (Stability of the LipNet-MRAC Approach). Consider the proposed

LipNet-MRAC approach shown in Fig. 6.1 (grey box). Under assumptions (A1)-(A3),

the dynamics of the adapted system from u to xa is finite-gain l2 stable if L < 1/γ,

where L is the Lipschitz constant of the LipNet, which we are free to choose, and γ

is an upper bound on the input-to-state gain of the robot system.

Proof. By assumption (A1), the state of the robot system can be bounded as fol-

lows: ||xa||l ≤ γ||ua||l + β = γ||u + δu||l + β ≤ γ||u||l + γ||δu||l + β. Moreover,

by assumption (A2) and the Lipschitz property of the LipNet, at any instance, the

input adjustment computed by the LipNet can be bounded as ||δu(k)|| ≤ L||ξ(k)||,
where L is the Lipschitz constant of the network, and ξ = [xTa , x

T
m, u]T denotes the

network input. It follows that ||δu||l = (
∑∞

k=0 ||δu(k)||2)1/2 ≤ (
∑∞

k=0 L
2||ξ(k)||2)1/2 =

L||ξ||l ≤ L||xa||l + L||xm||l + L||u||l. Using the upper bound on ||δu||l, we ob-

tain ||xa||l ≤ γ(1 + L)||u||l + γL||xa||l + γL||xm||l + β. It can be shown that, if

L < 1/γ is satisfied, the state of the robot system can be bounded by ||xa||l ≤(
γ(1 + L)||u||l + γL||xm||l + β

)
/(1 − γL). Since, by assumption (A3), ||xm||l is

bounded, the dynamics of the adapted system from u to xa is finite-gain l2 stable [67]

(cf. Fig. 6.1b).

Theorem 6.4.1 provides an upper bound on the Lipschitz constant of the adaptive

network module to guarantee stability. This Lipschitz condition can be enforced via

the architecture design of the LipNet (Sec. 6.4.1). To enforce the Lipschitz condi-

tion, we require an estimate of the upper bound of the system gain γ, which can be

6.5. SIMULATION RESULTS 111

estimated from system input-output data [68, 69] or chosen conservatively based on

our prior knowledge of the system. Overestimating γ will lead to a smaller, more

conservative Lipschitz constant for the LipNet, but the overall adapted system will

remain stable. However, if the system gain γ is underestimated, there is no guarantee

that the overall system is stable.

6.5 Simulation Results

In this section, we present a numerical example to illustrate the proposed LipNet-

MRAC approach.

6.5.1 Simulation Setup

We consider the following system:

xa(k + 1) =

[
1 T

−T 1− T

]
xa(k) + d(xa(k)) +

[
0

0.6T

]
u(k),

ya(k) =
[
1 1

]
xa(k),

(6.13)

where d(xa(k)) = 0.1T
[
xa,1(k) sin(xa,1(k)), 0

]T
with T = 0.01 and xa,1(k) being the

first element of xa(k). The gain of system (6.13) has an upper bound of γ = 1.12.

The system (6.13) has a relative degree of 1. The reference model is

xm(k + 1) =

[
1 T

−0.25T 1− T

]
xm(k) +

[
0

T

]
um(k),

ym(k) =
[
0.25 0.25

]
xm(k) .

(6.14)

The reference system (6.14) also has a relative degree of 1.

Our goal is to design an adaptive module such that the system output (6.13)

tracks the output of the reference model (6.14). In the discussion below, we first

illustrate the efficacy of using the proposed adaptive LipNet-MRAC approach to

make a nonlinear system (6.13) behave as a linear reference system (6.14) without

knowing the dynamics model of the nonlinear system a priori. We then show the

benefit of using the proposed LipNet-MRAC approach by comparing it to a learning-

based MRAC approach with a conventional feedforward network architecture (NNet).

Both the LipNet and the NNet have a depth and width of 3 and 20. The LipNet has

112 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

0 2 4 6 8 10 12

Time

-10

-5

0

O
u

tp
u

t

Input Ref. Model Baseline LipNet-MRAC NNet-MRAC

Figure 6.2: The proposed LipNet-MRAC approach effectively enforces the input-
output response of system (6.13) to behave as the the reference model (6.14) (blue
and red). The baseline response without adaptation is shown in grey. In contrast, with
the conventional NNet-MRAC (green), closed-loop stability is not guaranteed. This
simulation corresponds to one test input trajectory u(k) = sin

(
2π
5
kT
)
+5 cos

(
2π
3
kT
)
−

5 with T = 0.01. The learning rate is set to 33 for both approaches.

FullSort hidden layers and orthogonalized linear layers [19], while the NNet has tanh

hidden layers and standard linear layers. The same adaptation scheme (Sec. 6.4.3)

is applied to update the network parameters. The initial parameters of the networks

are randomly sampled from the standard normal distribution. We compare the two

approaches over ten randomly-initialized trials. To satisfy Theorem 6.4.1 with the

proposed LipNet-MRAC approach, the Lipschitz constant of the LipNet is set to

1/γ = 0.89 to guarantee stability.

6.5.2 Results

Figure 6.2 shows the response of the system (6.13) when using (i) the proposed

LipNet-MRAC approach, and (ii) a learning-based MRAC approach with a conven-

tional feedforward network architecture (abbreviated as NNet). By comparing the

baseline response of system (6.13) (grey line) and the response of system (6.13) with

the adaptive LipNet (blue line), we can see that the proposed approach effectively

enforces the dynamics of system (6.13) to behave as the reference model (red dashed

line) as desired. With the conventional NNet (green line), stability is not guaranteed.

Figure 6.3 compares the adaptation error when different learning rates are used

with NNet and the proposed LipNet. For each learning rate, the plot shows the mean

and standard deviation of the root-mean-square (RMS) error over ten randomly-

initialized trials. NNet has one ideal learning rate for which the mismatch between

the system and the reference model is the lowest. Searching for this ideal learning

rate requires trial-and-error and the system can be destabilized for higher values. For

the LipNet-MRAC approach, the stability of the system is not jeopardized, regardless

6.6. EXPERIMENTAL RESULTS 113

Figure 6.3: The performance of the proposed LipNet-MRAC approach and the NNet-
MRAC on one test trajectory when different learning rates are used. Using the
LipNet-MRAC approach, we can always guarantee stability, and the adaptation per-
formance asymptotically approaches a lower bound as the learning rate increases.
However, with the NNet-MRAC approach, there is an ideal learning rate that needs
to be carefully chosen, which can be challenging to find when we do not know the
robot dynamics a priori. The solid lines and the shades show the means and one
standard deviations for ten trials with different initial network parameters.

of the chosen learning rate. Higher learning rates generally allow for faster adapta-

tion to any mismatches between the reference model and the robot system. As a

result, the adaptation RMSE for the LipNet-MRAC case asymptotically approaches

an ideal value as the learning rate increases. By encoding the Lipschitz condition

(Theorem 6.4.1) in the LipNet design, we can safely increase the learning rate for

faster adaptation while guaranteeing stability a priori despite network parameter ini-

tialization.

6.6 Experimental Results

We demonstrate the proposed LipNet-MRAC approach through flying inverted pen-

dulum experiments. A video of the quadrotor experiments presented in this section

can be found here: http://tiny.cc/lipnet-pendulum

6.6.1 Experimental Setup

The goal of the experiment is to stabilize an inverted pendulum on a quadrotor

vehicle (the Bebop) while hovering and tracking a trajectory in the xy-plane. The

state of the quadrotor consists of the translational positions of its centre of mass

(COM) (px, py, pz), the translational velocities (vx, vy, vz), the roll-pitch-yaw Euler

angles (φ, θ, ψ), and the angular velocities (ωx, ωy, ωz). We model the pendulum as a

point mass [148]. To capture the dynamics of the pendulum, we define four additional

states (r, s, ṙ, ṡ), which correspond to the positions and velocities of the COM of the

http://tiny.cc/lipnet-pendulum

114 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

Quadrotor
(Parrot Bebop)

Pendulum
Centre of mass is
0.85 m above
the quadrotor

Figure 6.4: We demonstrate our proposed approach using a flying inverted pendulum,
where a quadrotor (Parrot Bebop) balances a pendulum while hovering at a fixed
point or tracking a trajectory.

pendulum relative to the positions and velocities of the COM of the quadrotor along

the x and the y axes—the pendulum is balanced in the upright position when both r

and s are zero. An illustration of the experimental setup is shown in Fig. 6.4.

By assuming that the quadrotor is stabilized at a constant height (i.e., vz = 0),

we can represent the translational dynamics of the flying inverted pendulum system

in the form below:

xa(k + 1) = fa(xa(k)) + ga(xa(k)) aa(k), (6.15)

where the state xa = [px,a, vx,a, ra, ṙa, py,a, vy,a, sa, ṡa]
T is an augmentation of the per-

tinent states of the quadrotor and the pendulum, and the input aa = [aa,x, aa,y]
T is

the actual acceleration of the quadrotor [148].

To design a stabilizing controller for the quadrotor-pendulum system in (6.15), one

could first design a controller to compute the required acceleration of the quadrotor

to stabilize the quadrotor-pendulum dynamics (6.15) and then use an inner-loop

attitude controller to ensure that the desired acceleration is achieved [148]. However,

in our experiments, we do not have access to the attitude control of the off-the-shelf

quadrotor. We instead apply the proposed LipNet-MRAC approach outside of the

attitude control loop to make the acceleration dynamics of the quadrotor behave as

6.6. EXPERIMENTAL RESULTS 115

a predefined reference model:

am(k + 1) = Amam(k) +Bmum(k), (6.16)

where um = [um,x, um,y]
T is the acceleration command. The reference model is then

incorporated into the overall quadrotor-pendulum dynamics model as an extended

system:

ξa(k + 1) =

[
fa(xa(k)) + ga(xa(k))aa(k)

Amaa(k)

]
+

[
0

Bm

]
u(k), (6.17)

where ξa = [xTa , a
T
a]T is the state of the extended system, and the input u is the

acceleration command of the quadrotor. In our experiments, the parameters of the

reference model were chosen to maximize the time-delay margin of the augmented

system (i.e., the maximum number of sample delays that the system can tolerate

before becoming unstable). Note that, as discussed in Chapter 2, we can estimate the

relative degree of an uncertain robot system from simple experiments. In our case,

the robot system and the reference model have a relative degree of 1.

Given the model in (6.17), we can use a standard model-based controller to design

a feedback control law for stabilizing the quadrotor-pendulum system. In this work,

we use a standard linear quadratic regulator (LQR) of the form u(k) = Kξ̃a(k), where

K is the controller gain designed based on (6.17), ξ̃a(k) is the error in the extended

state relative to a desired state, which is constant for stabilization tasks and time-

varying for tracking tasks. Note that, to compensate for the input-output delay

present in the quadrotor system, we introduced a lead compensator with a forward

prediction in the closed-loop system. Similar to the LQR controller, the parameters

of the lead compensator are determined based on (6.17).

To ensure that the acceleration dynamics of the quadrotor follow the reference

model (6.16), we assume decoupled quadrotor acceleration dynamics in the x- and y-

directions and use the proposed LipNet-MRAC approach outlined in Sec. 6.4. In the

experiments, the adaptive LipNets have depths of 3 and widths of 20. By observing

the input-output responses of the baseline quadrotor attitude controller on a set of

sinusoidal trajectories, the quadrotor system gain γ is estimated to be 0.68. Based

on Theorem 6.4.1, we conservatively set the Lipschitz constant of the LipNets to 0.8.

To train the LipNet online, we simultaneously fit a local BLR model to approximate

the forward acceleration dynamics. The parameters of the LipNet are updated to

minimize the cost (6.11) with λ = 0.8.

116 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

0 2 4 6 8 10

-0.5

0

0.5

1

1.5
Control Input Reference Model Baseline LipNet-MRAC

Figure 6.5: Given the control input (dashed line), the proposed LipNet-MRAC ap-
proach allows the actual acceleration of the quadrotor (blue) to closely follow the
output of the reference model (red). The response of the baseline system without
adaptation is shown in grey. A similar result is observed for the acceleration tracking
in the y-direction.

With the proposed LipNet-MRAC, the acceleration command from the LQR con-

troller is adjusted by the adaptive LipNet (Fig. 6.1b) and the overall acceleration

command sent to the quadrotor is ua(k) = u(k)+δu(k), where δu(k) is the adjustment

computed by the LipNet. Using the Euler parameterization of the attitude angles, the

acceleration command u = [ux, uy]
T is converted to the attitude commands based on

the following transformations: θc = arctan (ux/g) and φc = arctan
(
−uy/

√
u2x + g2

)
,

where θc and φc are the commanded pitch and roll angles, and g is the acceleration

due to gravity. The attitude commands are sent to the Bebop quadrotor onboard

controller at a rate of 50 Hz.

Our experiments consist of (i) verifying efficacy of the proposed LipNet-MRAC

for making the quadrotor system behave as a reference model and (ii) demonstrating

the LipNet-MRAC in closed-loop control for a flying inverted pendulum.

6.6.2 LipNet-MRAC for Predictable Acceleration Dynamics

We first show that the proposed LipNet-MRAC can make the acceleration dynamics

of the Bebop quadrotor behave as different predefined reference models. For simplicity

of the outer-loop controller design, we choose linear reference acceleration models of

the following form:

am(k + 1) =

[
βm,x 0

0 βm,y

]
am(k) +

[
αm,x 0

0 αm,y

]
um(k), (6.18)

where τm = (αm,x, βm,x, αm,y, βm,y) are model parameters.

To illustrate the idea of our proposed approach, we first set the reference model

parameters to τm = (0.35, 0.65, 0.35, 0.65). Figure 6.5 shows the quadrotor system

response with the baseline controller, and with the LipNet-MRAC on one test tra-

6.6. EXPERIMENTAL RESULTS 117

increasing similarity
between the reference
model and the robot system

Figure 6.6: The proposed LipNet-MRAC approach can effectively enforce the robot
system to behave as the randomly selected reference models. The plot shows a com-
parison of the system similarity between the five reference models and (i) the system
with the baseline controller (grey), and (ii) the system with the proposed LipNet-
MRAC module (blue). Smaller values of ψx and ψy indicate a higher system similarity
between the reference model and the system in terms of the ν-gap metric [133]; the
dots and shaded areas in the plot correspond to the means and 3σ error bounds of
the ν-gap estimates obtained based on the algorithm outlined in [149].

jectory. As can be seen from the plot, the adaptive LipNet brings the acceleration

response of the quadrotor system close to the given reference model.

To further demonstrate the efficacy of the LipNet-MRAC approach, we randomly

sample five sets of model parameters τm and apply the LipNet without any fine tuning

of the learning algorithm parameters. To formally evaluate the performance of the ref-

erence model adaptation approach, we use the ν-gap metric from robust control [133]

to measure the ‘distance’ between the reference model and the quadrotor system re-

sponse with and without LipNet adaptation. Intuitively, two dynamical systems that

are close in term of the ν-gap can be stabilized by the same controller. Figure 6.6

shows the estimated ν-gap metric using experimental data from the quadrotor and

the iterative algorithm outlined in [149]. A smaller ν-gap value indicates a higher

similarity between the reference model and the quadrotor system. The plot shows

that the LipNet-MRAC approach can reliably make the quadrotor system behave

close to the five reference models. In the next subsection, we apply LipNet-MRAC

to the flying inverted pendulum problem.

6.6.3 Inverted Pendulum on a Quadrotor Experiments

An LQR stabilization controller is designed based on the dynamics in (6.17), where

the reference acceleration model has the form of (6.18). In the controller design

process, we expect that the quadrotor system behaves as the reference model; we

118 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

0 5 10 15 20
-4

-2

0

2

4 Control Input Reference Model LipNet-MRAC

(a) Performance validation of the underlying LipNet-MRAC module. The
actual acceleration of the quadrotor (blue) closely follows the output accel-
eration of the reference model (red). Similar result is observed for ay. The
control input signal (black) is generated by the high-level LQR controller.

0 2 4 6 8 10 12 14 16 18 20

-0.5

0

0.5

baseline controller (thinner lines) unstable

(b) The error of the quadrotor positions x̃ and ỹ (dashed lines) and the pen-
dulum relative positions r̃ and s̃ (solid lines) when the quadrotor balances the
pendulum while hovering at a fixed position. The proposed LipNet-MRAC
approach (thicker lines) enables the pendulum to be balanced in the upright
position despite dynamics uncertainties. Without the LipNet-MRAC, due
to the model-reality gap, the baseline controller alone (thinner lines) cannot
stabilize the flying inverted pendulum system.

Figure 6.7: Quadrotor balancing a pendulum while hovering.

6.6. EXPERIMENTAL RESULTS 119

0 5 10 15 20
-4

-2

0

2

4 Control Input Reference Model LipNet-MRAC

(a) Performance validation of the underlying LipNet-MRAC module. The
actual acceleration of the quadrotor (blue) closely follows the output accel-
eration of the reference model (red). Similar result is observed for ay. The
control input signal (black) is generated by the high-level LQR controller.

0 5 10 15 20

-0.5

0

0.5

(b) The LipNet-MRAC approach allows the quadrotor to balance the pendu-
lum while tracking a circular trajectory with a radius of 0.25 m and angular
velocity of 1.25 rad/sec. The RMS error in the quadrotor positions (dashed
lines) and the pendulum positions (solid lines) are 0.27 m and 0.04 m, respec-
tively.

Figure 6.8: Quadrotor balancing a pendulum while tracking a trajectory.

120 CHAPTER 6. LIPSCHITZ NETWORK ADAPTATION

do not need to explicitly model the acceleration dynamics of the quadrotor system

or modify the default attitude controller onboard of the quadrotor platform. Our

experiments encompass the following tests: (i) pendulum stabilization, (ii) pendulum

stabilization with wind and tap disturbances, and (iii) pendulum stabilization while

tracking circular trajectories.

We first show results for the case when the quadrotor is commanded to hover at a

fixed point while balancing the pendulum. Figure 6.7a shows the acceleration response

of the quadrotor system. It can be seen that, as desired with the LipNet-MRAC, the

actual acceleration of the quadrotor follows the output of the reference model. As

compared to the baseline system of the quadrotor, the acceleration reference model

has an input-to-output gain closer to unity, which facilitates the outer-loop LQR con-

troller design. Figure 6.7b shows the resulting errors in the pendulum and quadrotor

system. Given the predictable behaviour of the acceleration dynamics, we see that the

outer-loop pendulum controller can successfully balance the pendulum while keeping

the quadrotor position error close to zero. The RMS error in the quadrotor and pen-

dulum positions are 0.08 m and 0.02 m, respectively. On the contrary, if we use the

baseline controller alone, there is a model-reality gap and the overall system is not

stable (lighter lines in Fig. 6.7b). As we demonstrate in the supplementary video, the

proposed LipNet-MRAC-based controller design is even able to maintain the pendu-

lum in the upright position when wind disturbances are applied to the quadrotor or

a gentle force is applied to the pendulum.

Next, we show the case when the quadrotor is commanded to track a circular

trajectory of radius 0.25 m and angular frequency 1.25 rad/sec while balancing a

pendulum. Figure 6.8a shows the acceleration response of the quadrotor system,

which closely tracks the output of the reference model despite the sharp changes in

the input signal. Figure 6.8b shows the position errors of the pendulum and the

quadrotor. The quadrotor is able to track the circular trajectory while keeping the

pendulum balanced. The RMS error in the quadrotor and pendulum positions are

0.27 m and 0.04 m, respectively. In the supplementary video, we show that the

quadrotor can successfully track circular trajectories with angular frequencies up to

2.09 rad/sec, while keeping the pendulum balanced.

6.7 Conclusions

In this chapter, we presented a neural model reference adaptive approach (LipNet-

MRAC) to make nonlinear systems with possibly unknown dynamics behave as a

6.7. CONCLUSIONS 121

predefined reference model. By leveraging the representative power of DNNs, the

proposed approach can be applied to a larger class of nonlinear systems than other

approaches in the literature. Moreover, we derive a certifying Lipschitz condition that

guarantees the stability of the overall adaptive LipNet framework. We applied the

proposed approach to a flying inverted pendulum. Our experiments show that the

proposed approach is able to make the dynamics of an unknown black-box quadrotor

system behave in a predictable manner, which facilitates the outer-loop pendulum

stabilization controller synthesis. By complementing a standard controller with the

proposed LipNet-MRAC, we successfully stabilized an inverted pendulum with an

off-the-shelf quadrotor platform whose dynamics are not known a priori.

Chapter 7

Summary and Future Work

In this dissertation, we explored learning-based control approaches that combine con-

trol theory and machine learning for high-performance robot control system designs.

While there are various machine learning techniques that we could have used in our

control architecture, we focus on methods that exploit the modeling capability of

neural networks and derive theoretical insights to guide safe and efficient implemen-

tations of neural networks for enhancing the performance of robot control systems.

In contrast to typical learning-based control techniques, in our work, we leverage the

baseline control system available to the robot and thereby make the overall learning

approach more data-efficient and less prone to instability issues—both are critical for

real-world applications.

7.1 Novel Contributions of This Thesis

In Chapter 2, we introduced a novel neural network inverse dynamics learning ap-

proach to enhance the trajectory tracking performance of robot control systems. We

used control theory to derive the input and output that are required for the neural

network to learn the full inverse map as well as conditions that are necessary for the

approach to be safely applied to physical robot systems. In experiments, we demon-

strated that, by using our theoretical insights, we effectively trained a neural network

using offline data to approximate the inverse dynamics of a quadrotor system; over

30 arbitrary hand-drawn trajectories, the theory-guided neural network design leads

to an average performance improvement of 62% .

In Chapter 3, we extended the inverse learning framework to non-minimum phase

systems (i.e., systems with unstable inverse dynamics). To the best our knowledge,

this is the first work showing the feasibility of learning stable approximate inverse

122

7.1. NOVEL CONTRIBUTIONS OF THIS THESIS 123

dynamics for non-minimum phase systems. Through both theory and experiments,

we showed that, by carefully selecting the input and output of the neural network

module, we can train an approximate inverse dynamics model of an unknown non-

minimum phase baseline system directly from its input-output data to efficiently

enhance its tracking performance. In Chapter 4, we further introduced an active

training trajectory generation approach to systematically collect data for training

neural network inverse dynamics modules.

Chapter 2 through Chapter 4 present a simple, yet effective neural network inverse

learning approach for enhancing the tracking performance of single robots when their

dynamics are not fully known. Inspired by the transfer learning literature, in Chap-

ter 5, we studied a novel online learning approach that allows the neural network

inverse module trained on a source robot to be used to improve the performance of

a target robot that is structurally similar but dynamically different (e.g., from one

quadrotor to another quadrotor with different mass or aerodynamic properties). In

quadrotor trajectory tracking experiments, we showed that, with a minimal amount of

data collected online, the proposed transfer learning approach effectively reduced the

tracking error of a target robot by an average 74% over 10 trajectories. The resulting

performance is comparable to the case when the neural network inverse dynamics

module of the target system was fully trained from scratch.

Finally, in Chapter 6, we explored the feasibility of using an online adaptive neu-

ral network to enforce an uncertain robot system to behave as a predefined reference

model. The approach can be combined with a model-based planner or controller de-

sign to realize a higher-level planning or control objective. In this work, we derived

an online adaptation law for training a neural network to achieve model reference

adaptation and exploited the Lipschitz property of a special type of neural network,

the Lipschitz network [19], to guarantee the stability of the adapted system. This ap-

proach was successfully verified in challenging flying inverted pendulum experiments,

where the proposed adaptive Lipschitz adaptation approach was combined with a

standard model-based controller (i.e., an LQR) to enable an uncertain quadrotor sys-

tem balancing an inverted pendulum while hovering or tracking circular trajectories.

Our work is the first work demonstrating the efficacy of using Lipschitz networks for

the closed-loop control of uncertain robot systems with theoretical guarantees.

124 CHAPTER 7. SUMMARY AND FUTURE WORK

7.2 Future Work

In this dissertation, we demonstrated the potential of incorporating control and ma-

chine learning to improve the performance of robot control systems. There are several

interesting extensions:

• Broadening the Class of Systems. In our work, we have considered robot

systems that can be modeled as continuous, control-affine nonlinear systems.

One possible extension is to explore the applicability of the inverse dynamics

learning for systems with hybrid dynamics (e.g., bipedal robots or quadrotors

with load suspension), where multiple dynamic equations defined on different

regions of the state space must be considered [150]. One trivial approach is to

apply the current results to each dynamical system and train a set of indepen-

dent neural network modules to enhance the tracking performance. Accounting

for transitions across the boundaries of the dynamic regions is an open ques-

tion. The hierarchical structure in some typical hybrid control approaches (e.g.,

supervisory control) naturally encourages a hierarchical learning structure for

dealing with this class of systems capturing more complex dynamics. This idea

requires further investigation in the context of inverse dynamics learning.

• Perception-Based Learning Control. The neural network add-on learning

approaches presented in this dissertation rely on state feedback from the robot

system. Practical robots often require reliable decision making using perception

inputs (e.g., camera images or LiDAR scans). Estimating the state of the

robot from perception data can be challenging, especially in visually-degraded

environments. Another potential extension to the work in this dissertation is to

investigate methodologies that systematically account for perception errors and

develop provably safe frameworks that seamlessly integrate perception feedback

for performing versatile tasks in uncertain environments. This may, for instance,

require novel Bayesian learning techniques (e.g., Bayesian deep learning [151])

to efficiently characterize the unknowns and thereby facilitate reliable reasoning

and decision making in unstructured environments.

• Similarity Characterization for Across-Domain Experience Transfer.

In Chapter 5 and our follow-up works [149, 152], we hint at the importance of

characterizing dynamics similarity when we intend to transfer the learning expe-

rience across two different domains, either from simulation to real experiments

7.2. FUTURE WORK 125

or between two dynamically different robots. While there exist alternative data-

driven approaches in the literature for characterizing domain similarity (e.g., by

using likelihood measures based on trajectories collected from the source and

target domains [153]), these approaches often suffer from scalability issues and

lack closed-loop theoretical guarantees. Another interesting direction could be

generalizing the notion of domain similarity presented in our work beyond tra-

jectory tracking tasks and leverage the similarity notion to provide theoretical

bounds on the transfer performance for practical applications.

Bibliography

[1] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena Scien-

tific, 2000.

[2] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control. Springer, 2012.

[3] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P.

Schoellig, “Safe learning in robotics: From learning-based control to safe re-

inforcement learning,” Annual Review of Control, Robotics, and Autonomous

Systems, 2021.

[4] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior,

V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural networks for

acoustic modeling in speech recognition: The shared views of four research

groups,” IEEE Signal Processing Magazine, vol. 29, no. 6, pp. 82–97, 2012.

[5] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with

deep convolutional neural networks,” Advances in Neural Information Process-

ing Systems (NeurIPS), vol. 25, pp. 1097–1105, 2012.

[6] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object

detection,” in Proc. of the IEEE/CVF Conference on Computer Vision and

Pattern Recognition (CVPR), 2020, pp. 10 781–10 790.

[7] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training of deep

visuomotor policies,” Journal of Machine Learning Research, vol. 17(39), pp.

1–40, 2016.

[8] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of reinforce-

ment learning to aerobatic helicopter flight,” Advances in Neural Information

Processing Systems, vol. 19, 2007.

126

BIBLIOGRAPHY 127

[9] M. Zucker, N. Ratliff, M. Stolle, J. Chestnutt, J. A. Bagnell, C. G. Atkeson, and

J. Kuffner, “Optimization and learning for rough terrain legged locomotion,”

International Journal of Robotics Research (IJRR), vol. 30, no. 2, pp. 175–191,

2011.

[10] I. Akkaya, M. Andrychowicz, M. Chociej, M. Litwin, B. McGrew, A. Petron,

A. Paino, M. Plappert, G. Powell, R. Ribas et al., “Solving rubik’s cube with a

robot hand,” arXiv preprint arXiv:1910.07113, 2019.

[11] N. Roy, I. Posner, T. D. Barfoot, P. Beaudoin, Y. Bengio, J. Bohg, O. Brock,

I. Depatie, D. Fox, D. E. Koditschek, T. Lozano-Perez, V. K. Mansinghka, C. J.

Pal, B. A. Richards, D. Sadigh, S. Schaal, G. S. Sukhatme, D. Thérien, M. Tou-

ssaint, and M. van de Panne, “From machine learning to robotics: Challenges

and opportunities for embodied intelligence,” 2021.

[12] C. J. Ostafew, A. P. Schoellig, and T. D. Barfoot, “Robust constrained learning-

based nmpc enabling reliable mobile robot path tracking,” International Jour-

nal of Robotics Research (IJRR), vol. 35, no. 13, pp. 1547–1563, 2016.

[13] L. Hewing, J. Kabzan, and M. N. Zeilinger, “Cautious model predictive con-

trol using Gaussian process regression,” IEEE Transactions on Control Systems

Technology, vol. 28, no. 6, pp. 2736–2743, 2019.

[14] J. F. Fisac, N. F. Lugovoy, V. Rubies-Royo, S. Ghosh, and C. J. Tomlin, “Bridg-

ing Hamilton-Jacobi safety analysis and reinforcement learning,” in Proc. of the

IEEE International Conference on Robotics and Automation (ICRA), 2019, pp.

8550–8556.

[15] M. Jin and J. Lavaei, “Control-theoretic analysis of smoothness for stability-

certified reinforcement learning,” in Proc. of the IEEE Conference on Decision

and Control (CDC), 2018, pp. 6840–6847.

[16] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Deep neural networks as add-on

modules for enhancing robot performance in impromptu trajectory tracking,”

The International Journal of Robotics Research, vol. 39(12), pp. 1397–1418,

2020.

[17] Y. Li, “Deep reinforcement learning: An overview,” arXiv preprint

arXiv:1701.07274, 2017.

128 BIBLIOGRAPHY

[18] C. Devin, A. Gupta, T. Darrell, P. Abbeel, and S. Levine, “Learning modular

neural network policies for multi-task and multi-robot transfer,” in Proc. of the

IEEE International Conference on Robotics and Automation (ICRA), 2017, pp.

2169–2176.

[19] C. Anil, J. Lucas, and R. Grosse, “Sorting out Lipschitz function approxima-

tion,” in Proc. of the International Conference on Machine Learning (ICML),

2019, pp. 291–301.

[20] Y. Liu and G. Nejat, “Robotic urban search and rescue: A survey from the

control perspective,” Journal of Intelligent & Robotic Systems, vol. 72(2), pp.

147–165, 2013.

[21] T. Brog̊ardh, “Present and future robot control development — An industrial

perspective,” Annual Reviews in Control, vol. 31(1), pp. 69–79, 2007.

[22] J. Nikolic, M. Burri, J. Rehder, S. Leutenegger, C. Huerzeler, and R. Siegwart,

“A UAV system for inspection of industrial facilities,” in Proc. of the IEEE

Aerospace Conference, 2013, pp. 1–8.

[23] K. Åström and T. Hägglund, “Revisiting the Ziegler–Nichols step response

method for PID control,” Journal of Process Control, vol. 14(6), pp. 635–650,

2004.

[24] B. A. Francis and W. M. Wonham, “The internal model principle of control

theory,” Automatica, vol. 12(5), pp. 457–465, 1976.

[25] A. Liniger, A. Domahidi, and M. Morari, “Optimization-based autonomous

racing of 1:43 scale RC cars,” Optimal Control Applications and Methods, vol.

36(5), pp. 628–647, 2015.

[26] R. Hirschorn, “Invertibility of multivariable nonlinear control systems,” IEEE

Transactions on Automatic Control, vol. 24(6), pp. 855–865, 1979.

[27] S. Devasia, D. Chen, and B. Paden, “Nonlinear inversion-based output track-

ing,” IEEE Transactions on Automatic Control, vol. 41(7), pp. 930–942, 1996.

[28] J.-J. E. Slotine and W. Li, “On the adaptive control of robot manipulators,”

International Journal of Robotics Research, vol. 6(3), pp. 49–59, 1987.

[29] M. W. Spong, “On the robust control of robot manipulators,” IEEE Transac-

tions on Automatic Control, vol. 37(11), pp. 1782–1786, 1992.

BIBLIOGRAPHY 129

[30] S. Levine, N. Wagener, and P. Abbeel, “Learning contact-rich manipulation

skills with guided policy search,” in Proc. of the IEEE International Conference

on Robotics and Automation (ICRA), 2015, pp. 156–163.

[31] X. Da, R. Hartley, and J. W. Grizzle, “Supervised learning for stabilizing un-

deractuated bipedal robot locomotion, with outdoor experiments on the wave

field,” in Proc. of the IEEE International Conference on Robotics and Automa-

tion (ICRA), 2017, pp. 3476–3483.

[32] P. Drews, G. Williams, B. Goldfain, E. A. Theodorou, and J. M. Rehg, “Ag-

gressive deep driving: Combining convolutional neural networks and model pre-

dictive control,” in Proc. of the Conference on Robot Learning (CoRL), 2017,

pp. 133–142.

[33] S. Tang and V. Kumar, “Autonomous flight,” Annual Review of Control,

Robotics, and Autonomous Systems, vol. 1(1), pp. 29–52, 2018.

[34] S. Bansal, A. K. Akametalu, F. J. Jiang, F. Laine, and C. J. Tomlin, “Learning

quadrotor dynamics using neural network for flight control,” in Proc. of the

IEEE Conference on Decision and Control (CDC), 2016, pp. 4653–4660.

[35] D. A. Bristow, M. Tharayil, and A. G. Alleyne, “A survey of iterative learning

control,” IEEE Control Systems, vol. 26(3), pp. 96–114, 2006.

[36] A. P. Schoellig, F. L. Mueller, and R. D’Andrea, “Optimization-based iterative

learning for precise quadrocopter trajectory tracking,” Autonomous Robots, vol.

33(1-2), pp. 103–127, 2012.

[37] A. Tayebi, “Adaptive iterative learning control for robot manipulators,” Auto-

matica, vol. 40(7), pp. 1195–1203, 2004.

[38] B. Kiumarsi, F. L. Lewis, H. Modares, A. Karimpour, and M.-B. Naghibi-

Sistani, “Reinforcement Q-learning for optimal tracking control of linear

discrete-time systems with unknown dynamics,” Automatica, vol. 50(4), pp.

1167–1175, 2014.

[39] T. Zhang, G. Kahn, S. Levine, and P. Abbeel, “Learning deep control policies

for autonomous aerial vehicles with MPC-guided policy search,” in Proc. of the

IEEE International Conference on Robotics and Automation (ICRA), 2016, pp.

528–535.

130 BIBLIOGRAPHY

[40] Y. P. Pane, S. P. Nageshrao, and R. Babuška, “Actor-critic reinforcement learn-

ing for tracking control in robotics,” in Proc. of the IEEE Conference on Deci-

sion and Control (CDC), 2016, pp. 5819–5826.

[41] D. Nguyen-Tuong and J. Peters, “Local Gaussian Process regression for real-

time model-based robot control,” in Proc. of the IEEE International Conference

on Intelligent Robots and Systems (IROS), 2008, pp. 380–385.

[42] M. K. Helwa, A. Heins, and A. P. Schoellig, “Provably robust learning-based

approach for high-accuracy tracking control of Lagrangian systems,” arXiv

preprint arXiv:1804.01031, 2018.

[43] Z. Yan and J. Wang, “Robust model predictive control of nonlinear systems with

unmodeled dynamics and bounded uncertainties based on neural networks,”

IEEE Transactions on Neural Networks and Learning Systems, vol. 25(3), pp.

457–469, 2014.

[44] W. He, Y. Chen, and Z. Yin, “Adaptive neural network control of an uncertain

robot with full-state constraints,” IEEE Transactions on Cybernetics, vol. 46(3),

pp. 620–629, 2016.

[45] S. Iplikci, “Support Vector Machines-based generalized predictive control,” In-

ternational Journal of Robust and Nonlinear Control, vol. 16(17), pp. 843–862,

2006.

[46] D. Nguyen-Tuong and J. Peters, “Using model knowledge for learning inverse

dynamics,” in Proc. of the IEEE International Conference on Robotics and

Automation (ICRA), 2010, pp. 2677–2682.

[47] S. Schaal, C. G. Atkeson, and S. Vijayakumar, “Scalable techniques from non-

parametric statistics for real time robot learning,” Applied Intelligence, vol.

17(1), pp. 49–60, 2002.

[48] Q. Li, J. Qian, Z. Zhu, X. Bao, M. K. Helwa, and A. P. Schoellig, “Deep neural

networks for improved, impromptu trajectory tracking of quadrotors,” in Proc.

of the IEEE International Conference on Robotics and Automation (ICRA),

2017, pp. 5183–5189.

[49] F. L. Mueller, A. P. Schoellig, and R. D’Andrea, “Iterative learning of feed-

forward corrections for high-performance tracking,” in Proc. of the IEEE In-

BIBLIOGRAPHY 131

ternational Conference on Intelligent Robots and Systems (IROS), 2012, pp.

3276–3281.

[50] S. Zhou, M. K. Helwa, and A. P. Schoellig, “Design of deep neural networks

as add-on blocks for improving impromptu trajectory tracking,” in Proc. of the

IEEE Conference on Decision and Control (CDC), 2017, pp. 5201–5207.

[51] K. J. Hunt, D. Sbarbaro, R. Żbikowski, and P. J. Gawthrop, “Neural networks

for control systems — A survey,” Automatica, vol. 28(6), pp. 1083–1112, 1992.

[52] H. Suprijono, W. Wahab, and B. Kusumoputro, “Optimized direct inverse con-

trol to control altitude of a small helicopter,” in MATEC Web of Conferences,

vol. 34. EDP Sciences, 2015.

[53] M. I. Jordan and D. E. Rumelhart, “Forward models: Supervised learning with

a distal teacher,” Cognitive Science, vol. 16(3), pp. 307–354, 1992.

[54] M. Kawato, “Feedback-error-learning neural network for supervised motor

learning,” in Advanced Neural Computers. Elsevier, 1990, pp. 365–372.

[55] F.-C. Chen and H. K. Khalil, “Adaptive control of a class of nonlinear discrete-

time systems using neural networks,” IEEE Transactions on Automatic Control,

vol. 40(5), pp. 791–801, 1995.

[56] S. S. Ge and J. Zhang, “Neural-network control of nonaffine nonlinear system

with zero dynamics by state and output feedback,” IEEE Transactions on Neu-

ral Networks, vol. 14(4), pp. 900–918, 2003.

[57] Y. Zhang, G. Tao, and M. Chen, “Adaptive neural network based control of

noncanonical nonlinear systems,” IEEE Transactions on Neural Networks and

Learning Systems, vol. 27(9), pp. 1864–1877, 2016.

[58] Z.-P. Jiang and Y. Wang, “Input-to-state stability for discrete-time nonlinear

systems,” Automatica, vol. 37(6), pp. 857–869, 2001.

[59] T.-J. Jang, H.-S. Ahn, and C.-H. Choi, “Iterative learning control for discrete-

time nonlinear systems,” International Journal of Systems Science, vol. 25(7),

pp. 1179–1189, 1994.

[60] M. Sun and D. Wang, “Analysis of nonlinear discrete-time systems with higher-

order iterative learning control,” Dynamics and Control, vol. 11(1), pp. 81–96,

2001.

132 BIBLIOGRAPHY

[61] J. B. Hoagg and D. S. Bernstein, “Nonminimum-phase zeros — much to do

about nothing — classical control revisited Part II,” Control Systems, vol. 27(3),

pp. 45–57, 2007.

[62] H. Sussmann, “Limitations on the stabilizability of globally-minimum-phase

systems,” IEEE Transactions on Automatic Control, vol. 35(1), pp. 117–119,

1990.

[63] J. L. Giesbrecht, H. K. Goi, T. D. Barfoot, and B. A. Francis, “A vision-based

robotic follower vehicle,” in SPIE 7332, Unmanned Systems Technology XI,

2009, pp. 73 321O1–73 321O12.

[64] M. K. Helwa and A. P. Schoellig, “On the construction of safe controllable

regions for affine systems with applications to robotics,” in Proc. of the IEEE

Conference on Decision and Control (CDC), 2016, pp. 3000–3005.

[65] M. Fazlyab, A. Robey, H. Hassani, M. Morari, and G. J. Pappas, “Efficient and

accurate estimation of Lipschitz constants for deep neural networks,” in Proc.

of the Conference on Neural Information Processing Systems (NeurIPS), 2019,

pp. 11 427–11 438.

[66] B. Francis and P. Khargonekar, Robust Control Theory, ser. The IMA volumes

in mathematics and its applications. Springer, 1995.

[67] H. K. Khalil, “Nonlinear systems third edition,” Patience Hall, 2002.

[68] K. Van Heusden, A. Karimi, and D. Bonvin, “Data-driven estimation of the

infinity norm of a dynamical system,” in Proc. of the IEEE Conference on

Decision and Control (CDC), 2007, pp. 4889–4894.

[69] M. R. James and S. Yuliar, “Numerical approximation of the H∞ norm for

nonlinear systems,” Automatica, vol. 31(8), pp. 1075–1086, 1995.

[70] G. F. Franklin, J. D. Powell, A. Emami-Naeini, and J. D. Powell, Feedback

control of dynamic systems. Addison-Wesley Reading, MA, 1994, vol. 3.

[71] M. K. Helwa and P. E. Caines, “Epsilon controllability of nonlinear systems on

polytopes,” in Proc. of the IEEE Conference on Decision and Control (CDC),

2015, pp. 252–257.

BIBLIOGRAPHY 133

[72] M. Dahleh, M. A. Dahleh, and G. Verghese, Lectures on Dynamic Systems

and Control. Department of Electrical Engineering and Computer Science,

Massachuasetts Institute of Technology, 2004.

[73] C. M. Bishop, Pattern recognition and machine learning. Springer, 2006.

[74] P.-J. Bristeau, F. Callou, D. Vissiere, and N. Petit, “The navigation and control

technology inside the ARDrone micro UAV,” IFAC Proceedings Volumes, vol.

44(1), pp. 1477–1484, 2011.

[75] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv

preprint:1412.6980, 2014.

[76] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov,

“Dropout: A simple way to prevent neural networks from overfitting,” Journal

of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.

[77] A. De Luca, P. Lucibello et al., “Inversion techniques for trajectory control of

flexible robot arms,” Journal of Field Robotics, vol. 6(4), pp. 325–344, 1989.

[78] S. A. Al-Hiddabi and N. H. McClamroch, “Tracking and maneuver regulation

control for nonlinear nonminimum phase systems: Application to flight control,”

IEEE Transactions on Control Systems Technology, vol. 10(6), pp. 780–792,

2002.

[79] B. P. Rigney, L. Y. Pao, and D. A. Lawrence, “Nonminimum phase dynamic

inversion for settle time applications,” IEEE Transactions on Control Systems

Technology, vol. 17(5), pp. 989–1005, 2009.

[80] J. J. E. Slotine and W. Li, Applied nonlinear control. Prentice Hall, New

Jersey, 1991.

[81] Y. Zhang, Q. Zhu, and R. Xiong, “Pre-action and stable inversion based precise

tracking for non-minimum phase system,” in Proc. of the IEEE Conference on

Decision and Control (CDC), 2016, pp. 5682–5687.

[82] A. S. Polydoros, L. Nalpantidis, and V. Krüger, “Real-time deep learning of

robotic manipulator inverse dynamics,” in Proc. of the IEEE International Con-

ference on Intelligent Robots and Systems (IROS), 2015, pp. 3442–3448.

134 BIBLIOGRAPHY

[83] D. Nguyen-Tuong, J. Peters, M. Seeger, and B. Schölkopf, “Learning inverse dy-

namics: a comparison,” in European Symposium on Artificial Neural Networks,

no. EPFL-CONF-175477, 2008.

[84] C. Williams, S. Klanke, S. Vijayakumar, and K. M. Chai, “Multi-task Gaussian

Process learning of robot inverse dynamics,” in Proc. of the Advances in Neural

Information Processing Systems (NIPS), 2009, pp. 265–272.

[85] S. Jung and S. S. Kim, “Control experiment of a wheel-driven mobile inverted

pendulum using neural network,” IEEE Transactions on Control Systems Tech-

nology, vol. 16(2), pp. 297–303, 2008.

[86] A. de Almeida Neto, W. R. Neto, L. C. S. Góes, and C. Nascimento, “Feedback-

error-learning for controlling a flexible link,” in Proc. of the IEEE Brazilian

Symposium on Neural Networks, 2000, pp. 273–278.

[87] E. D. Sontag and Y. Wang, “Notions of input to output stability,” Systems &

Control Letters, vol. 38(4), pp. 235–248, 1999.

[88] A. M. Bloch, N. E. Leonard, and J. E. Marsden, “Controlled Lagrangians and

the stabilization of mechanical systems I: The first matching theorem,” IEEE

Transactions on Automatic Control, vol. 45(12), pp. 2253–2270, 2000.

[89] Quanser Consulting Inc., “IP02 self-erecting inverted pendulum user’s guide,”

1996, Available at: http://www.mecatronica.eesc.usp.br/wiki/upload/1/11/

Manual SelfErecting.pdf.

[90] J. A. Butterworth, L. Y. Pao, and D. Y. Abramovitch, “The effect of

nonminimum-phase zero locations on the performance of feedforward model-

inverse control techniques in discrete-time systems,” in Proc. of the American

Control Conference, 2008, pp. 2696–2702.

[91] B. Settles, “Active learning literature survey,” Technical Report, University of

Wisconsin, Madison, vol. 52(55-66), 2010.

[92] V. V. Fedorov, Theory of Optimal Experiments. Elsevier, 1972.

[93] R. Lorenz, R. P. Monti, I. R. Violante, C. Anagnostopoulos, A. A. Faisal,

G. Montana, and R. Leech, “The automatic neuroscientist: a framework for

optimizing experimental design with closed-loop real-time fMRI,” NeuroImage,

vol. 129, pp. 320–334, 2016.

http://www.mecatronica.eesc.usp.br/wiki/upload/1/11/Manual_SelfErecting.pdf
http://www.mecatronica.eesc.usp.br/wiki/upload/1/11/Manual_SelfErecting.pdf

BIBLIOGRAPHY 135

[94] L. Ljung, “System identification,” in Signal Analysis and Prediction. Springer,

1998.

[95] A. J. G. Schoofs, “Experimental design and structural optimization,” in Struc-

tural Optimization. Springer, 1988, pp. 307–314.

[96] J. A. List, S. Sadoff, and M. Wagner, “So you want to run an experiment, now

what? some simple rules of thumb for optimal experimental design,” Experi-

mental Economics, vol. 14(4), pp. 439–457, 2011.

[97] B. Settles, “Active learning,” Synthesis Lectures on Artificial Intelligence and

Machine Learning, vol. 6(1), pp. 1–114, 2012.

[98] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian Active Learning with

Image Data,” in Proc. of the International Conference on Machine Learning

(ICML), 2017.

[99] S. Tong and D. Koller, “Support vector machine active learning with applica-

tions to text classification,” Journal of Machine Learning Research (JMLR),

vol. 2, pp. 45–66, 2001.

[100] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation: Represent-

ing model uncertainty in deep learning,” in Proc. of the International Confer-

ence on Machine Learning (ICML), 2016, pp. 1050–1059.

[101] D. A. Cohn, Z. Ghahramani, and M. I. Jordan, “Active learning with statistical

models,” Journal of Artificial Intelligence Research (JAIR), vol. 4, pp. 129–145,

1996.

[102] R. Burbidge, J. J. Rowland, and R. D. King, “Active learning for regression

based on query by committee,” in Proc. of the International Conference on

Intelligent Data Engineering and Automated Learning (IDEAL). Springer,

2007, pp. 209–218.

[103] D. Cohn, L. Atlas, and R. Ladner, “Improving generalization with active learn-

ing,” Machine Learning, vol. 15(2), pp. 201–221, 1994.

[104] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control

for quadrotors,” in Proc. of the IEEE International Conference on Robotics and

Automation (ICRA), 2011, pp. 2520–2525.

136 BIBLIOGRAPHY

[105] G. Calafiore, M. Indri, and B. Bona, “Robot dynamic calibration: Optimal exci-

tation trajectories and experimental parameter estimation,” Journal of Robotic

Systems, vol. 18(2), pp. 55–68, 2001.

[106] W. Rackl, R. Lampariello, and G. Hirzinger, “Robot excitation trajectories

for dynamic parameter estimation using optimized b-splines,” in Proc. of the

IEEE International Conference on Robotics and Automation (ICRA), 2012, pp.

2042–2047.

[107] J. Swevers, C. Ganseman, D. Bilgin, J. De Schutter, and H. Van Brussel, “Op-

timal robot excitation and identification,” IEEE Transactions on Robotics and

Automation, vol. 13(5), pp. 730–740, 1997.

[108] D. A. Cohn, “Neural network exploration using optimal experiment design,”

Neural Networks, vol. 9(6), pp. 1071–1083, 1996.

[109] B. Lakshminarayanan, A. Pritzel, and C. Blundell, “Simple and scalable pre-

dictive uncertainty estimation using deep ensembles,” in Proc. of Advances in

Neural Information Processing Systems (NIPS), 2017, pp. 6402–6413.

[110] S. Geman, E. Bienenstock, and R. Doursat, “Neural networks and the

bias/variance dilemma,” Neural Computation, vol. 4(1), pp. 1–58, 1992.

[111] D. Nguyen-Tuong and J. Peters, “Model learning for robot control: a survey,”

Cognitive Processing, vol. 12(4), pp. 319–340, 2011.

[112] H. B. Ammar, E. Eaton, P. Ruvolo, and M. Taylor, “Unsupervised cross-domain

transfer in policy gradient reinforcement learning via manifold alignment,” in

Proc. of the AAAI Conference on Artificial Intelligence, 2015.

[113] B. Bócsi, L. Csató, and J. Peters, “Alignment-based transfer learning for robot

models,” in Proc. of the International Joint Conference on Neural Networks

(IJCNN), 2013, pp. 1–7.

[114] M. K. Helwa and A. P. Schoellig, “Multi-robot transfer learning: A dynamical

system perspective,” in Proc. of the IEEE International Conference on Intelli-

gent Robots and Systems (IROS), 2017, pp. 4702–4708.

[115] A. Gupta, C. Devin, Y. Liu, P. Abbeel, and S. Levine, “Learning invariant

feature spaces to transfer skills with reinforcement learning,” in Proc. of the

International Conference on Learning Representations, 2017.

BIBLIOGRAPHY 137

[116] S. Daftry, J. A. Bagnell, and M. Hebert, “Learning transferable policies for

monocular reactive MAV control,” in Proc. of the International Symposium on

Experimental Robotics. Springer, 2016, pp. 3–11.

[117] M. E. Taylor and P. Stone, “Transfer learning for reinforcement learning do-

mains: A survey,” Journal of Machine Learning Research (JMLR), vol. 10, pp.

1633–1685, dec 2009.

[118] J. Blitzer, R. McDonald, and F. Pereira, “Domain adaptation with struc-

tural correspondence learning,” in Proc. of the Association for Computational

Linguistics Conference on Empirical Methods in Natural Language Processing,

2006, pp. 120–128.

[119] Z. Wang, Y. Song, and C. Zhang, “Transferred dimensionality reduction,”

in Machine Learning and Knowledge Discovery in Databases, W. Daelemans,

B. Goethals, and K. Morik, Eds., 2008, pp. 550–565.

[120] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

Knowledge and Data Engineering, vol. 22, no. 10, pp. 1345–1359, Oct 2010.

[121] J. Fu, S. Levine, and P. Abbeel, “One-shot learning of manipulation skills

with online dynamics adaptation and neural network priors,” arXiv preprint

arXiv:1509.06841, 2016.

[122] K. Pereida, D. Kooijman, R. R. P. R. Duivenvoorden, and A. P. Schoellig,

“Transfer learning for high-precision trajectory tracking through L1 adaptive

feedback and iterative learning,” International Journal of Adaptive Control and

Signal Processing, 2018.

[123] M. Hamer, M. Waibel, and R. D’Andrea, “Knowledge transfer for high-

performance quadrocopter maneuvers,” in Proc. of the IEEE Conference on

Intelligent Robots and Systems (IROS), 2013, pp. 1714–1719.

[124] K. Pereida, M. K. Helwa, and A. P. Schoellig, “Data-efficient multi-robot, multi-

task transfer learning for trajectory tracking,” IEEE Robotics and Automation

Letters, vol. 3(2), pp. 1260–1267, 2018.

[125] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause, S. Schaal, and

S. Trimpe, “Virtual vs. real: Trading off simulations and physical experiments

in reinforcement learning with Bayesian optimization,” in Proc. of the IEEE

138 BIBLIOGRAPHY

International Conference on Robotics and Automation (ICRA), 2017, pp. 1557–

1563.

[126] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel, “Sim-to-real trans-

fer of robotic control with dynamics randomization,” in Prof. of the IEEE Inter-

national Conference on Robotics and Automation (ICRA), 2018, pp. 3803–3810.

[127] C. Finn, T. Yu, T. Zhang, P. Abbeel, and S. Levine, “One-shot visual imitation

learning via meta-learning,” in Proc. of Machine Learning Research (PMLR),

vol. 78, 2017, pp. 357–368.

[128] A. Lazaric, “Transfer in reinforcement learning: a framework and a survey,” in

Reinforcement Learning. Springer, 2012, pp. 143–173.

[129] E. D. Sontag, “Input to state stability: Basic concepts and results,” in Nonlinear

and optimal control theory. Springer, 2008, pp. 163–220.

[130] A. Hock and A. P. Schoellig, “Distributed iterative learning control for a team

of quadrotors,” 2016.

[131] M. Whorton, L. Yang, and R. Hall, Similarity Metrics for Closed Loop Dynamic

Systems, ser. AIAA Guidance, Navigation and Control Conference and Exhibit.

American Inst. of Aeronautics and Astronautics, 2008.

[132] C. E. Rasmussen, Gaussian processes for machine learning. MIT Press, 2006.

[133] K. Zhou and J. C. Doyle, Essentials of Robust Control. Prentice Hall Upper

Saddle River, 1998.

[134] S. Sastry and M. Bodson, Adaptive Control: Stability, Convergence and Ro-

bustness. Courier Corporation, 2011.

[135] J. Cooper, J. Che, and C. Cao, “The use of learning in fast adaptation algo-

rithms,” International Journal of Adaptive Control and Signal Processing, vol.

28(3-5), pp. 325–340, 2014.

[136] G. Chowdhary, H. A. Kingravi, J. P. How, and P. A. Vela, “Bayesian non-

parametric adaptive control using Gaussian processes,” IEEE Transactions on

Neural Networks and Learning Systems, vol. 26(3), pp. 537–550, 2014.

BIBLIOGRAPHY 139

[137] F. Chen, R. Jiang, K. Zhang, B. Jiang, and G. Tao, “Robust backstepping

sliding-mode control and observer-based fault estimation for a quadrotor UAV,”

IEEE Transactions on Industrial Electronics, vol. 63(8), pp. 5044–5056, 2016.

[138] D. Limón, I. Alvarado, T. Alamo, and E. F. Camacho, “Robust tube-based

MPC for tracking of constrained linear systems with additive disturbances,”

Journal of Process Control, vol. 20(3), pp. 248–260, 2010.

[139] X. Lyu, J. Zhou, H. Gu, Z. Li, S. Shen, and F. Zhang, “Disturbance observer

based hovering control of quadrotor tail-sitter vtol UAVs using H∞ synthesis,”

IEEE Robotics and Automation Letters, vol. 3(4), pp. 2910–2917, 2018.

[140] N. Hovakimyan and C. Cao, L1 Adaptive Control Theory: Guaranteed Robust-

ness with Fast Adaptation. Society for Industrial and Applied Mathematics,

2010.

[141] C. J. Ostafew, A. P. Schoellig, T. D. Barfoot, and J. Collier, “Learning-based

nonlinear model predictive control to improve vision-based mobile robot path

tracking,” Journal of Field Robotics, vol. 33(1), pp. 133–152, 2016.

[142] C. D. McKinnon and A. P. Schoellig, “Learn fast, forget slow: Safe predictive

learning control for systems with unknown and changing dynamics performing

repetitive tasks,” IEEE Robotics and Automation Letters, vol. 4(2), pp. 2180–

2187, 2019.

[143] A. Xie, J. Harrison, and C. Finn, “Deep reinforcement learning amidst lifelong

non-stationarity,” arXiv preprint arXiv:2006.10701, 2020.

[144] G. Lightbody and G. Irwin, “Direct neural model reference adaptive control,”

IEEE Proceedings-Control Theory and Applications, vol. 142(1), pp. 31–43,

1995.

[145] G. Joshi and G. Chowdhary, “Deep model reference adaptive control,” in Proc.

of the IEEE Conference on Decision and Control (CDC), 2019, pp. 4601–4608.

[146] G. Shi, X. Shi, M. O’Connell, R. Yu, K. Azizzadenesheli, A. Anandkumar,

Y. Yue, and S.-J. Chung, “Neural lander: Stable drone landing control using

learned dynamics,” in Proc. of the International Conference on Robotics and

Automation (ICRA), 2019, pp. 9784–9790.

140 BIBLIOGRAPHY

[147] S. Zhou, M. K. Helwa, A. P. Schoellig, A. Sarabakha, and E. Kayacan, “Knowl-

edge transfer between robots with similar dynamics for high-accuracy im-

promptu trajectory tracking,” in Proc. of the European Control Conference

(ECC), 2019, pp. 1–8.

[148] M. Hehn and R. D’Andrea, “A flying inverted pendulum,” in Proc. of the IEEE

International Conference on Robotics and Automation (ICRA), 2011, pp. 763–

770.

[149] M. J. Sorocky, S. Zhou, and A. P. Schoellig, “Experience selection using dy-

namics similarity for efficient multi-source transfer learning between robots,”

in Proc. of the IEEE International Conference on Robotics and Automation

(ICRA), 2020.

[150] P. J. Antsaklis, “A brief introduction to the theory and applications of hybrid

systems,” in Proc. of the IEEE Special Issue on Hybrid Systems: Theory and

Applications, 2000, pp. 879–887.

[151] E. Daxberger, A. Kristiadi, A. Immer, R. Eschenhagen, M. Bauer, and P. Hen-

nig, “Laplace redux-effortless bayesian deep learning,” Advances in Neural In-

formation Processing Systems, vol. 34, 2021.

[152] M. J. Sorocky, S. Zhou, and A. P. Schoellig, “To share or not to share? perfor-

mance guarantees and the asymmetric nature of cross-robot experience trans-

fer,” IEEE Control Systems Letters, vol. 5(3), pp. 923–928, 2021.

[153] A. Rajeswaran, S. Ghotra, B. Ravindran, and S. Levine, “Epopt: Learning

robust neural network policies using model ensembles,” 2017.

	Introduction
	Add-on Inverse Learning
	Introduction
	Related Work
	Problem Formulation
	Derivation and Theoretical Analysis
	Background on System Inversion
	Underlying Function Modeled by the DNN Module
	DNN Input Selection
	Stability
	Difference Learning Scheme for Improving the Training Efficiency

	Simulation Results
	Simulation Setup
	Simulation 1: Illustrations of Underlying Function and Necessary Condition
	Simulation 2: Illustrations of the Transfer Function Approach

	Quadrotor Experiments
	Experiment Setup
	Experiment 1: DNN Input-Output Design
	Experiment 2: Generalization to Different Trajectory Speeds
	Experiment 3: DNN Training Dataset
	Experiment 4: Difference Learning

	Conclusions

	Inverse Learning for Non-minimum Phase Systems
	Introduction
	Related Work
	Problem Formulation
	Non-minimum Phase System Inverse Learning
	The Proposed Approach: DNN Input Modification
	Stability of the Proposed Approach
	Insights on Performance Enhancement
	Connection to the ZOS Approach

	Simulation Results
	Simulation Setup
	Results

	Experimental Results
	Pendulum-Cart Experiments
	Quadrotor Experiments

	Conclusions

	Active Training Trajectory Generation
	Introduction
	Related Work
	Problem Statement
	Background on Active Learning for DNNs
	DNN Model Preliminaries
	Predictive Uncertainty Estimation for DNNs
	Measures of Informativeness

	Active Training Trajectory Generation
	Spline Trajectory Generation
	Integrating Active Learning and Trajectory Optimization

	Simulation Results
	DNN Predictive Uncertainty Estimation
	Active Training Trajectory Generation

	Conclusions

	Cross-Robot Experience Transfer
	Introduction
	Related Work
	Problem Formulation
	Theoretical Results
	Reference Adaptation for Exact Tracking
	System Similarity
	Stability in the Presence of Uncertainties

	Simulation Results
	Simulation Setup
	Results

	Quadrotor Experiments
	Experiment Setup
	Results

	Conclusions

	Lipschitz Network Adaptation
	Introduction
	Related Work
	Problem Formulation
	Methodology
	Background on Lipschitz Networks
	Model Reference Adaptation Law
	Online Learning of the Model Reference Adaptation Law
	Stability Analysis

	Simulation Results
	Simulation Setup
	Results

	Experimental Results
	Experimental Setup
	LipNet-MRAC for Predictable Acceleration Dynamics
	Inverted Pendulum on a Quadrotor Experiments

	Conclusions

	Summary and Future Work
	Novel Contributions of This Thesis
	Future Work

	Bibliography

