Solutions

Duration: 45 minutes

Number of Problems: 1

Permitted Aids: None.

Use only the prepared sheets for your solutions.
Problem 1

Consider the following dynamical system,

\[\dot{x}(t) = u(t), \quad 0 \leq t \leq T, \quad x(0) = x_0 \]

where \(x(t) \in \mathbb{R} \) and \(u(t) \in \mathbb{R} \). \(x_0 \) and \(T \) are fixed and given.

a) Calculate the optimal trajectory \(x^*(t) \) and optimal control input \(u^*(t) \) that minimize

\[J = \frac{1}{2} \int_0^T (x^2(t) + u^2(t)) \, dt. \]

b) Find \(x^*(t) \) and \(u^*(t) \) as \(T \to \infty \). Furthermore, calculate the optimal cost

\[J^*_\infty = \lim_{T \to \infty} \frac{1}{2} \int_0^T (x^*^2(t) + u^*^2(t)) \, dt. \]

c) Find a solution \(V(t, x) : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \) to the following partial differential equation

\[0 = \min_u \left(\frac{1}{2} (x^2 + u^2) + \frac{\partial V(t, x)}{\partial t} + \frac{\partial V(t, x)}{\partial x} u \right), \quad t \geq 0. \]
Solution 1

a) Apply the minimum principle:

- The Hamiltonian is given by
 \[H(x, u, p) = \frac{1}{2} (x^2 + u^2) + pu \]

- The adjoint equations follow from the equation above
 \[\dot{p}(t) = -\frac{\partial H}{\partial x} = -x(t), \quad p(T) = 0 \] (no terminal cost)

- The optimal input is obtained by minimizing the Hamiltonian along the optimal trajectory
 \[\frac{\partial H}{\partial u} = 0 \quad \Rightarrow \quad u + p = 0 \quad \Rightarrow \quad u = -p \]

- Now \(\dot{x} = -p \) and \(\dot{p} = -x \) yield
 \[\ddot{x} = x, \quad x(0) = x_0, \quad \dot{x}(T) = 0. \]

- Solving the above differential equation gives

 Method 1: Candidate solution \(x(t) = A \cosh(t) + B \sinh(t) \)
 Using initial conditions \(x(0) = x_0, \) \(\dot{x}(T) = 0 \) and \(\dot{x} = A \sinh(t) + B \cosh(t), \)
 we get \(A = x_0 \) and \(B = -x_0 \frac{\sinh(T)}{\cosh(T)}. \) This gives,
 \[x(t) = x_0 \cosh(t) - x_0 \frac{\sinh(T)}{\cosh(T)} \sinh(t) \]
 \[u(t) = \dot{x}(t) = x_0 \sinh(t) - x_0 \frac{\sinh(T)}{\cosh(T)} \cosh(t) \]

 Method 2: Candidate solution \(x(t) = A'e^t + B'e^{-t} \)
 Using initial conditions \(x(0) = x_0, \) \(\dot{x}(T) = 0 \) and \(\dot{x} = A'e^t - B'e^{-t}, \)
 we get \(A' = \frac{x_0}{1+e^{2T}} \) and \(B' = \frac{-x_0}{1+e^{-2T}}. \) This gives,
 \[x(t) = \frac{x_0}{1+e^{2t}} e^t + \frac{x_0}{1+e^{-2t}} e^{-t} \]
 \[u(t) = \dot{x}(t) = \frac{x_0}{1+e^{2t}} e^t - \frac{x_0}{1+e^{-2t}} e^{-t} \]

b) Optimal solution for infinite horizon setting:

- Using the solution of Method 1 in a)
 \[x(t) = x_0 \left(\frac{e^t + e^{-t}}{2} - \left(\frac{e^T - e^{-T}}{e^t + e^{-t}} \right) \left(\frac{e^t - e^{-t}}{2} \right) \right) \]
 as \(T \to \infty, \) \(x(t) \to x_0 e^{-t} \)
 similarly, \(u(t) \to -x_0 e^{-t} \)
 \[J^*_\infty = \frac{1}{2} \int_0^\infty \left(x_0^2 e^{-2t} + x_0^2 e^{-2t} \right) dt = \frac{x_0^2}{2} e^{-2t} \bigg|_0^\infty = \frac{x_0^2}{2} \]
\(J^*(t, x) = \frac{1}{2} \int_0^T \left(x^2(t) + u^2(t) \right) dt. \)
\[= \frac{x_0^2}{2} \frac{1 - e^{-4T}}{(1 + e^{-2T})^2} \]
\[\Rightarrow J^*_\infty(t, x) = \lim_{T \to \infty} J^*(t, x) = \frac{x_0^2}{2} \]

c) This is the Hamilton-Jacobi-Bellman equation for the above optimal control problem. For the above problem, if we find ourselves at state \(x \) at time \(t \), the optimal cost to go is \(\frac{x^2}{2} \). Therefore, \(V(t, x) = \frac{x^2}{2} \) is a candidate solution.

Verify:

\[\frac{\partial V}{\partial t} = 0, \quad \frac{\partial V}{\partial x} = x \]
\[\Rightarrow \min_u \left(\frac{1}{2} (x^2 + u^2) + xu \right) \]
occurs when \(u = -x \). Then we have \(\frac{1}{2} (x^2 + x^2) - x^2 = 0 \), as required.